RADIOFT

WHITE'S RADIO
LOG

SM-FM STATIONS WORLD-WILE SHART-WAVE LIETINGS!

UGUST-SEPTEMBER 756

ALL ABOUT WHISTLERS

Lightning-caused radio waves that can be heard on your hi-ff !

INJESTIGAT

Signal generator

TEST REPORTS

Ampex Model 160 Automalic Tape Recorder Knight-Kit Model KG-685 Color Bar/Pattern Generator Acoustech Mcdel XI Power Amplifier Kit and Add-on Preamp Kit

PLANS FOR:

- Test Bench Power Supply
- Space-Age Xtal Set
- Midget Mike Preamp

More electronics value for your money!

Save up to 50\% with EICO Kits and Wired Equipment.

Whether you're looking for the fun and economy of building quality kits or you want ready-to-use factorywired equipment - before you buy, examine carefully.
Whatever your interest - hi-fi, CB, ham, test instruments or
automotive electronics - compare EICO with anybody else.

The more critical you are, the more you'll see for yourself that your best buy is EICO.
See EICO at your local dealer.

KITS \& WIRFD

Checks starter
Sets engine idle and automatic transmission shift points
Detects dwell angle variations and distributor wear

- Checks voltage regulator
- Checks alternator and generator's current and volt age outputs
Finds open or shorted condensers.

NEW EICO 888 Solid State Engine Analyzer Kit \$4.4.95 Only!

Now you can tune-up, troubleshoot and test your own car or boat. Keep your car or boat engine in tip-top shape with this completely port. able, self-contained, self-powered universal engine analyzer. Completely tests your total ignition/ electrical system. The first time you use it - just to tune for peak performance - it'll have paid for itself. (No tune-up charges, better gas consumption, longer wear) 7 instruments in one, the EICO 888 does all these for 6 V and 12 V systems; $4,6 \& 8$ cylinder engines:

- Detects condition of point surfaces
- Checks ignition coil and distributor
- Finds poor or open ground connections
- Checks alternator diodes
- Checks headlights, pilot lamps, horns, starter relays, fuses, accessories
- Substitutes ignition capacitor
- Determines battery charge/discharge rate
- Measures spark output \& leakage
- Checks engine timing and power balance Now you can always know your engine's ef. liciency - keep it in top shape yourself! The EICO 888 comes complete with a comprehensive Tune-up and Troubleshooting Manual including RPM and Dwell angle for over 40 models of American and Foreign cars. The Model 888 is an outstanding value factory-wired at $\$ 59.95$.

Over $3,000,000$ EICO instruments now in use! Preferred by engineers, scientists, technicians and students.

If you're interested in Radio, TV or Electronics-as a hobby or a possible future ca-eer-clip the coupon below and mail it for your FREE copy of this new 64-page booklet. It was written to answer the questions people usually ask about these fields. Questions you may well have.

For example: What electronics course should you study? It depends on your reason for wanting to learn about electronics-and "Electronics" helps you match your personal ambitions with the types of courses that are available. You'll learn what each kind of course will teach you . . cind what jobs it will prepare you to fill. (The booklet uses 22 International Correspondence Schools courses for reference; they represent the broadest range you'll find anywhere.)
"Electronics" also contains a detailed description of the home study "extras" you can expect when you study with I.C.S.

What's it like to study an electronics course by mail? "Electronics" tells you. - What guarantee do you have of success in electronics? An eminent educator answers this and other basic questions. - How
long will your study take? What do former students say about the benefits they are receiving from home study? How valuable do employers consider home study? The booklet answers these questions, as well as many, many more.

Your FREE copy of "Electronics" is waiting for you. All you have to do is fill out the coupon now, and mail it right away.
CLIP COUPON HERE
1.C.S., Scranton, Pa. 18515 Accredited Member, National Home Study Council

RADIO－TV EXPERIMENTER

Aug．－Sept． 1966 CONTENTS／INDEX
acover Highlights

Aug．－Sept． 1966 CONTENTS／INDEX \star Cover Highlights	氝	끈	$\begin{aligned} & \text { 들 } \\ & \frac{3}{2} \\ & \frac{2}{5} \\ & 0 \end{aligned}$			$\underset{\underset{E}{\sum}}{\underset{y}{E}}$	宕	（
Dry Cell Eliminator．．．．．．．．．．．． 27		－	－		－	－		
		－	－				－	
Ham Radio Handicaps．．．．．．．．．．．．．． 36	－			－				
David Sarnoff－An Electronics Biography．	－					－		－
ふ̌Lab Check－Acoustech Model XI．． 43	－	－			－			
\％All About Whistlers．．．．．．．．．．． 46	－	－			－			－
Propagation Forecast．．．．．．．．．．．．． 50	－	－		－				
χ_{2} Audio Investigator ．．．．．．．．．．．． 51		－	－		－		－	
\＆Test Bench Power Supply．．．．．．．．． 55		－	－				－	
\＆Lab Check－Ampex Model 1160．． 61	－	－			－			
\＆Lab Check－Knight－Kit KG－685．．．63		－	－			－	－	
Voltage By the Numbers．．．．．．．．．．．． 64	－							－
Semiconductor Phono Unit．．．．．．．． 66		－	－		－			
$z_{\text {is Midget Mike Preamp．．．．．．．．．．．．} 69}$		－	－	－	－			
Flying Showcase．．．．．．．．．．．．．．．．． 72	－			－			－	－
DX＇ing the Out－of－Band－its．．．．．．． 73	－			－				－
Add an Outlet．．．．．．．．．．．．．．．．． 95		－	－				－	－
Oscillators：Theory and Practice．．．．． 79	－	－						－
Fiber Optics．．．．．．．．．．．．．．．．．．．．．． 84	－	－						－

WHITE＇S RADIO LOG，Vol．46，No．1—Page 89
DEPARTMENTS • Positive Feedback 6 －CB Column 12 －New Prod－ ucts 14 －Bookmark 21 －Ask Me Another 24 －Literature Library 11^{0}

NOW THERE ARE 88 RADIO SHACKS COAST TO COAST！

10-pc Power Transistor Pak

Asst. 4,10,20 Asst. 4,
watt, 50 watt sizes; germanium, silicon types. Asst. TO-3, $-5,-8,-13$ and TO-36 cases $27-036$ Net 1.98
-ARCHER-TWIN-PAKS
Popular PNP Types
5 Each of
98 - 2N107 Types - CK722 Types

Exclusive! Ideal for all audio applications. Base diagrams incl. 27-031

10 NPN \& 15 PNP
25 for
198
For RF applications, switching, general purpose audio types. Replace many numbers withaut circuit change. 27-1516

Check Coupon Below for

FREE 1966 RADIO SHACK CATALOGS!

One full year of catalogs and bargain bulletins! Special purchases, closeouts and exclusives in hi-fi, CB, electronic parts.

> mall today to NEAREST rado Shick STORE

- P/eose send FREE 1966 Rodio Shack Cotologs! R/TV-866											
Please send me the modules and accessories I have listed below. \square My order totals $\$ 4.95$, so include my FREE copy of yoùr $\$ 2.00$ Solid-State Electronic Prolect book. I enclose $\$$ postage and handling anywhere in the U.S.A. which includes 504 to cover											
Name (please print)											
Street											
City State___________											

Zip through Scott's new solid state FM stereo tuner kit in one afternoon

Four to six hours! That's all you need to zip through Scott's new LT-112 FM stereo tuner kit. Start after lunch . . . enjoy superb stereo at dinner. Scott solid state circuitry is the key to the LT-112's superior performance. Costly silicon transistors give performance unapproached by any other kit on the market. The LT. 112 is kit-brother to Scott's bestselling 312 solid state stereo tuner, of which Audio said, ". . . one of the finest tuners anywhere." ■ Your LT-112 arrives with all critical circuitry prewired, pre-tested, pre-aligned, and mounted on heavyduty printed circuit boards. Scott's exclusive lifesize, full-color construction book details every step . . . makes perfect wiring almost automatic. You'd never believe a kit so easy to build could be so packed with features. Built into the LT-112 is a new Scott invention . . . the Tri-modulation meter, used for a Signal Strength Indicator, Zero Center Indicator, and Alignment Meter. See your Scott dealer today, and pick up an LT-112 tuner kit . . . $\$ 179.95$ plus one enjoyable afternoon will net you a lifetime of listening pleasure.

For complete information on Scott's kits \& components write:
H. H. Scott, Inc., 111 Powdermill Road, Maynard, Mass. Dept. 565-05
Export: Scott International, Maynard, Mass. CableHIFI. Prices slightly higher west of Rockies. Prices and specifications subject to change without notice.

 RADIO-TV EXPERIMENTER

Dedicaled to Americn's Electronics Experimenters

JULIAN M. SIENKIEWICZ	Editor
WA2CQL/KMD43I3	
WILLIAM HARTFORD	Technical Editor
KKD7432	Construction Editor
KLMER C. CARLSON	
ANTHONY MACCARRONE	Art Director
IRVING BERNSTEIN	Cover Art Direcîor
ROGENE F. LANDINO STAFFIERI	Assoriate Art Director
JUDITH ANDERSON	Art Editor
JIM CAPPELLO	Art Associate
LEONARD F. PINTO	Production Director
CARL BARTEE	Production Manager
HELEN GOODSTEIN	Assistant Production Manager
CLIFF SHEARER	Eromotion Director
JOSEPH DAFFRON	Execufite Editor

President and Publisher
B. G. DAVIS

Executive Vice President and Assistant Publisher JOEL DAVIS

Vice President and Editorial Director HERB LEAVY. KMD4529

RADIO-TV EXPERIMENTER, Vol. 21, No. I 167981, is published bi-monthly by SCIENCE \& MECHANICS PUBLISHING CO., o subsidiary of Davis Publications, Inc. Edirorial, business and subscription offices: 505 Park Ave., New York, N. Y. 10022. One-yeor subscription Isix issues) $\$ 4.00$; two-year subscription 112 issues) - $\$ 7.00$; and three-year subscription 118 issues) - $\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Adverfising offices: New York, 505 Park Ave., Pl-2-6200; Chicago: 520 N . Michigan Ave., 527-0330; Las Angeles: 1709 W. 8th St. 213-483-5317; Atlanta: Pirnie \& Brown 3108 Piedmont Rd., N.E., 404-233-6729; Long Island: Len Osten, 9 Garden Street, Great Neck, N.Y., 516-487-3305; Southwestern advertising representative. Jim Wright, 4 N . Eight St., St. Louis, CH 1-1965.

EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handed with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or photographs. All contributions should be addressed to the Editor, Radic-TV Experimenter, 505 Park Avenue, New York, New York 10022.

Second class postage paid at New York, New York and at additional mailing office. Copyright 1966 by Science and Mechanics Publishing Co.

KEEP PACE WITH SPACE AGE! SEE MANNED MOON SHOTS, SPACE FLIGHTS, CLOSE.UP!

NEW WORKING MODEL DIGITAL COMPUTER

OF GIANT ELECTRONIC BRAINS

$$
\begin{aligned}
& \text { Fascinating new see-through model computer } \\
& \text { actully solves problems teaches computer }
\end{aligned}
$$ actually solves problems, teaches computer fundamentals. Adds, subtracts, multiplies, shifts, complements, carries, memorizes, counts. plastuc parts ily y ass

p.ste covering operation assembly diagrams. and 15 experiments. Stock No. 70.683-HP P.BE nstDald DETAILED PROGRAMVMiNGं BOOKLET' 'FOR' EXPERIMENTS Stock No. 9080-HP (50 pages) $\$ 1.00$ Postpaid

Hondymen, Hobbyists, Homeowners! INGENIOUS NEW VACUUM BASE Makes Yools and Appliances Portable Now move all kinds rof normally bolted-down deof Vacumm Hase drilied to securely hold vices, miter hoxes, drills, reffectors, gages, measuring devices, food choppers and other home appliances. Base also handily adapted for mounting camera, plate of heary neoprene attaches securely (by
 vacuums vertically, norizontally, even upside down to linaleum metal, porcelain, formica, glass, etc. Unit reslsts 50 to 75.1 , force parallel to base, $200 \cdot 1 b$. force perpendicular to hase. Fuggedyy cun.
 Stock No. 60,567-HP
$\$ 3.00$ Postpaid
BARGAIN PRICE—WAR SURPLUS COLLIMATOR AIHD INFINITE LIGHT SOURCE
 Expensive surplus gun sight orig. cost Gov't. about $\$ 100$. Wrs essentially a collimator or source of infindte light. Many uses for experimenters-research labs. Cortains ring and dot reticle, ${ }^{\prime \prime \prime}$ acluromatic lens, silsered reflector bulb. $33_{s} 1 x^{2} 5 /{ }^{\prime \prime}$ reflector glass plate, Bulb operates on IfV, can aro srailable. Convenient holes for easy mounting. Sturdily built 5tock No, $70,774-\mathrm{HP}$ 160V Transformer for Light Source. Stock No. 60,521-MP
\$9.95 Postpaid \$3.75 Postpaid GAMES OF LOGIC FOR THINKERS: Excating as
in athatraet WEF'N PROOF

hinking and an as chess. Gives mactice
 ommbat! 21 games of progrensive difleulty. sotarts With withple games mastered by sumie to-year sults. whiciant mat ubtle logic to eha

WFFIN PROOF EQUATIONS NS. $0,525-\mathrm{HP}$ Stock No. 60,526-HP

BINOCULAR-TO-CAMERA HOLDER

Will Fit Any Camera

For Exciting Tolephoto Plctures liring distant objects 7 times nefrer with NEW CAMERA.TO-HINOCUIAR HOLDER. tileal for lorig range photos of wild life, shops, people, planes, etc. Camera and unocular atach easily. case any binoc. gray crinkle and bright chrome finlsh. 10" leng. Full directions for takink telephotos.
Stock No. 70,223-HP.
$\$ 11.50$ Postpaid
"Balls of Fun" for Kids.
Tratfic Stoppers for Stores
Terrific for Amateur Meteorologists
SURPLUS GIANT WEATHER BALLOONS

> At lant eter. Ct
\qquad avatiable again in big 8.ft. diameter. Create a neighborhood sensation. Great backyard fun. Exciting beach atiraction. Blow
up with vacuum cleaners or auto air hose. Stivith enough for hard play; all other uses. Filied with helium (available locally) use thalloons high in the sky to attract crowds, advertise store sales, announce falr openings, etc. Amateur meteorologists use balloons to measure
cloud hetghts, wind speed, temperature, prescloud heights, wind speed, heights. Photographers can utilze for low-cost herial phutos. Hecent
ruhtuer.

See the Stars, Moon, Planets Close Up! " ASTRONOMICAL REFLECTING TELESCOPE 60 to 180 Power-Famous Mt. Patomar Typel An Unusual Buy:
 Assembled-Ready to use! You'll see the rings of Saturn. the fasctnating planet, Mars, huge craters on the Moon, Phases of entus. detail. Galaxtes! Eituatorial mount with lock on both axes. Aluminized and overcoated $3^{\prime \prime}$ diameter highspeed f/10 mirror. Telescone comes equipped with a 60 x eyepicce and a mounted Barlow Lens, giving you 60 to 180 power. Low-cost accessory eyepiece available for higher powers. An Optical Finder Telescope. always so essential, is also included. Sturdy, hardwood. porable trinod. FREFF with scova: - raluable s\%ar canrt plus 272 page $\cdot H A N D B$ orf of HEAVENS" plus "How To ESE FOUR TELESCOPE" BOOK.
Stock No. 85.050-HP. $\$ 29.95$ Postpald
$41 / 4^{\prime \prime}$ Reffecting Telescope-up to 270 Power Stock No. 85.105-HP

SUPERB 6" REFLECTOR TELESCOPE
Stock No. 85,086.HP...................... $\$ 199.50$ F.O.B,
WAR SURPLUS AMERICAN-MADE 7×50 BINOCULARS

Fascinating Toy Adaptation of Binary Digital Computer BEAT "DR. NIM" IN ANCIENT GAME:

 ahbity. Th 1 , Wy, relrate need for mathematival down plasik game hos hat through series of flip-
Ho川 chanels. Inow you shy fip-hops on begin
 path mat of travil for each matble delerminges thanbles. All plays predict-
athle. Now DR. Nim automatically able. Now DR. NIM automatically plays predict
 Inn. Durable red white plastic $113 / 4^{\prime \prime} \times 121 / 2^{\prime \prime}$ Stock No. 70,816-HP $\$ 2.98$ Postpaid
Brand New, Quick-Charge, Industrial Surplus NICKEL-CADMIUM BATTERY

Unparalleled Value

For the first time a 6 -volt, light-weight nickel-cadalum battery in statnless steel. strad type cusing. 4-amp hour capacity. Almost unlimited life-thousands of discharescharge cycles with minute deterioration-charges fully in uppros. 1 hr. with Edmumd charger kit. Just a few drops of water per year prowide pull maintenanes. Ifundreds of uses for hobbyints, anateur photographers, campers. model bullders, cte. G'nequathed fior rechargeable lanterns; cycle reooters, and hoal lights; portable fluorescot and altra-violet lights; electronic flash units. Baltery radires minimunt of electrolyte; is sealed to prevent los: deliers nearly 100 'it or outpht at below freezing temperatures compared to 50 'm by lead-acid batteries. No corrosive fumes under any stage of recharge. ('an't be type terninals on top 1 w"
 Stock No. $\mathbf{7 0 , 7 7 6 - H P}$
\$15.00 Postpaid CHARGER KIT FOR G.VOLT BATTERY. Chars's in approx. 1 hr . Shuts off autumatically. attaches to stuck No. $70 . i 76$ battery case Includes tratsiformer. hallast resistors, eharger circuit board. inount ing hardware. 8 -ft. cord, blug switeh. assembly instructions. Stock No. 70,807-HP ONE 1.2 VOLT NICKEL

WAIL COUPON FOT FRE CATALOC HTPD

EDMUND SCIENTIFIC CO., Barrington, N. J. Completely New 1966 Edition. 148 pages. Nearly 4500 Unusual Bargains.
Please rush Free Giant Catalog. HP.

Name

Address
City.

> the IITETainy Moidel 501 COMPONENT SUBSTITUTOR .the instrument acclaimed by servicemen, engineers and school shops now available in a wite-it-yourself KIT!
> step-by-step illustrated instructions make the Model 501 easy-to-build

Will substitute up to 4 different components at the same time

A surge protector switch prevents arcing, sparking, or healing of electrolytics

> Electrolytics are
> discharged automatically
places a complete
 range of components at your fingertips for fast substitution

No longer do you have to handle crumpled parts...soldei and unsolder components as you troubleshoot a set. With a twist of a knob you can set the 501 to any electronic components you want and need... Substitutes for Carbon Resistors Power Resistors - Capacitors Electrolytics - Crystal! Diodes Selenium Power
and Silicon
Power Rectifiers.

Model 501 K Kit $4=5$ Model 501 Wired $\$ 39.95$ Net

[^0]Julian M. Sifnkieiticz, Editor WA2CQL/KMD4313

- We regret to announce the passing of the long familiar and well-known generic term cycles. It is survived by Hertz (Hz), kilohertz (kHz), megahertz (mHz) and gigahertz (gHz) who are direct decendants of cycles (cps), kilocycles (kc), megacycles (mc) and gigacycles (gc). All of whom are well fixed in our minds and are likely to be referred to, mistakenly, as if they were still with us. The cycles family will long linger in our memories and we will mention them from time to time-indicating the place they formerly occupied in our technology.

The new terms direct honor to Heinrich R. Hertz (1857-1894) for demonstrating the propagation of electromagnetic waves with the crude equipment at his disposal. His name is now given the honor previously given to Ampere, Coulomb, Curie, Faraday, Henry, Volta and others whose names are used to identify a unit of measurement in the field of their investigations.
To keep pace with encroaching technology, we find we are forced to get in step with other published technical material that now abides by the adoption suggested by the various technical societies.

Please bear with us while we adjust to the new suffixes relating to electrical frequencywe'll probably goof now and then and use the old term since we, being somewhat human, are creatures of habit.

No Fuses Needed. A 25 -million-watt battery the size of a telephone booth is being built to put out, pound for pound, almost as much energy as exploding dynamite. The U. S. Army needs it to power lasers (light amplifiers) which produce intense beams of "concentrated" light. Half a million fluorescent lamps could be lighted simultaneously by the superbattery, which the Army calls the most powerful in the world.

There is a problem, however: lasers need their huge jolts of electricity in brief, fraction-of-a-sceond pulses. Scientists of the Army Missile Command are faced with designing a splitsecond on-off switch for their battery before

\title{

BUILD 20 RADIO

\section*{CIRCUITS AT HOME

CIRCUITS AT HOME

 with the New Improved

 with the New Improved $2{ }^{13}$ $2{ }^{13}$ PROGRESSIVE RADIO "EDU-KIT" ${ }^{\text {® }}$

 PROGRESSIVE RADIO "EDU-KIT" ${ }^{\text {® }}$}

Now Inciudes
12 RECEIVERS

* 3 TRANSMITTERS
* SQ. WAVE GENERATOR * SIGNAL TRACER * AMPLIFIER
* SIGNAL INJECTOR
* CODE OSCILLATOR

\star No Knowledge of Radio Necessary \star No Additional Parts or Tools Needed \star EXCELLENT BACKGROUND FOR TV
\star SCHOOL INGUIRIES INVITED
\star Sold In 79 Countries

YOU DON'T HAVE TO SPEND

 HUNDREDS OF DOLLARS FOR A RADIO COURSEThe "fEdu-kit'. offers you an outstanding PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our kit is destgned to train Radio \& Electronics Techniclans, making
usse of the most modern methods of home training. You will leatn radio theory, construcHse of the most modern methots IS A COMPLETE RADIO COURSE IN EVERY DETALL: tion practice and servicing. This is A cing rezular schematics; how to wire and solden in a profess onal manner; how to service radios. You will work with the stancard tyou of punched metal chassiss as well as the thes of radio. You will ocostruct. study and work with AF and AF ampitiers and osciflators, detectors, rectiviers. Test equipment. You wh practice trouble-shooting, using the progressive signal Tracer, Progressive signat Injector, Pro-
 Mgou wilt receeve training for the Novice. Technician and General Classes of F.c.c. Radio
Amateur Licenses. You will build Receiver, Transmilter, Square Wave Gererator, Code Amateur Licenses. You will bull Meceiver, Transmiter, Sarnare wave
Oscillator, signal Will receive an excellent background for radio or science is required. The "Edu-Kit" is the product of many years of teaching and engineering experience. The "Edurkit's Will provide you with a basic education in Electronics and Radio, worth many times the low

THE KIT FOR EVERYONE

You do not need the slightest background In radlo or sclence. Whether you are Interested In Radlo \& Electronics because you
want an interesting hobby, a well paying want an interesting with a future, you will find ages and backgrounds have successfully carefully designed. step by step. so that carefully designed. step by step. so that
you cannot makeamistake. rhe Edu.kit
allows you to teach yourself at vour own
rate. No instructor is necessary.

PROGRESSIVE TEACHING METHOD

The Progrestive Radio "Edu.Nit" is the foremost educational radio kit in the world, and is universalty accepted as the standard in the field of electronics tratining. The learn schematics, study theory, practice trouble shooting-all in a closely integrated program destgned to provide an easily-learned, thorough and interesting. background in radio. you beqin by examining the varlous radio parts ot the Edu-knt. radou Wen thitn the futhetion wheory and wistening to reseutar broadcast statlons, learn theory, practice testing and trouble-shooting. Then you buld a more advanced radio, learn more advanced theory and techiniques. Gradually, in a progresslve manner, and at your own rate. you will protesstonal Radlo Technictan.
professtonal Radio Techmictan, course are Receiver, Transmitter, Code oscillator, signal
included in the Edu-Kit', course Tracer, Square Wave Generator and Signal Injector Circuits. These are not unprofessional "breadboard" experiments, but genuine radio circuis, consis mew method of radio construction known wiring and solderina on metal chassis, plinted circuitry." These circuits ofsate on your ragular AC or DC house current.

THE "EDU-KIT" IS COMPLETE

You wifl recelve all parts and instructiong necessary to build twenty differont radio and olectronics circuits, each guaranteed to operate. Our Kits contain tupes, tube wockets, virithectronice electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie strips, able, electrolytic, mina, tubing, punched metal chassis, instruction Manuals, hook-up wire, solder,
hardiware,
selenium rectifiers, coils, volume controleand switches, etc.
In addition, you receive Printed circuit materials, including Printed circuit chassis,
pecial tube sockets, hardware and instructions. You also receive a usefus set of tools, a special tube sockets, hardware and iron, and a self-powered Dynamic Radio and Electronich professional electric soldiso includes Code Instructions and the Progressive Code oscillator, in rddition to F.C.C. Radio Amateur License training. You will also receive lessons for iervicing with the Progressive Signal Tracer and the Progressive Signal Club, Free chansulas Fidelity Guide and a Quiz Book. You receive Membersipip in Radio-TVerve, all parts, tools tion Service, certilicate of Merit and insting yours to keep.

PRINTED CIRCUITRY

At no increase in price, the "Edu. Kit" now includes Printed Circuitry You build a Printed Circuit Signal Injactor, a unique ervicing instrument that can detect many Radio and TY troubles, This revolutionary ew technique of radio construction is now becoming popular in commersial radto and TV sets:
A Printed Circuit is a special insulated chassis on which has been deposited a conducting material which takes the place of wiring. The various parts are merely plugged in and soldered to terminals.
Printed Circuitry is the basis of modern Automation Electronics. A knowledge of this subject is a mecessity today for anyone interested in Electronits.

Positive Feedback

they can even test it. They had the same trouble with the better mouse trap until someone invented cheese.

Quarks of Space. Radio waves picked up here on earth from far-distant objects in space could be used to discover that the suggested building blocks of all matter in the universe, called "quarks," actually exist. The radio-wave method of detecting quarks, now unseen but theoretically possible nuclear particles.

The existence of quarks, of which many scientists are not convinced, was first suggested about two years ago by Dr. Murray Gell-Mann of California Institute of Technology. Unlike ordinary protons or neutrons, the constituents of atomic cores having either no charge or unit charges, quarks are charged in fractions. If they exist, each would have a charge either onethird or two-thirds that of an electron, the negative carrier of electricity. The electron charge was considered a basic unit. and no fraction of this unit was thought possible. If quarks exist, they should emit radiation, some of which would be at radio wavelengths, in a manner similar to the way the hydrogen atom does. Sensitive radio telescopes such as the 300 -foot antenna at the National Radio Astronomical Observatory in Green Bank, W. Va., could be used to detect such emissions.

The radiation from quarks could be picked up
even if quarks are only one hundred thousandth as numerous as hydrogen in a galaxy. The quark radiation should have a wavelength of 106 centimeters, or about 42 inches, while that of the widely-studied hydrogen emission is 21 centimeters.

Strongly emitting radio galaxies, such as Cygnus A, would be the best regions to search for the quark radiation. The puzzlingly bright objects known as quasars would be even better, but they are too far away. However, radio galaxies are thought by some to be remnants of quasars. Therefore, radio galaxies should be among the most promising sources in which to look for traces of quarks, since matter there should be highly concentrated and energetic.

New Freqs. for Flyers. The Federal Communications Commission has granted the petition of the Academy of Model Aeronautics for five new radio frequencies in the $72-76 \mathrm{mHz}$ (mc.) band for the express use of radio controlled model aircraft. The frequencies were available on June 20, 1966. They are 72.08 mHz (mc.), 72.24 mHz (mc.), 72.40 mHz (mc.), 72.96 mHz (mc.), and 75.64 mHz (mc.).

The new frequencies are incorporated into the class C Citizens Band, but reserved exclusively for modeler use. This is the same service under which radio controllers are now licensed. Therefore, no new licenses will be required. Current frequencies in the 27 mHz (mc.) band are not affected by the action.

Equipment on the new frequencies is limited

PERSONAL TV LISTENER
Enjoy Television in private without disturbing others. Full rich sound through comfortable individual ear phones. Others don't hear a thing. Ideal for late night viewing or keeping house quiet during children's programs. With extra ear set two can listen.

TELEX 1200

- Superior sensitivity and re. sponse - Extra rugged and tamper proof - Field serviceable - Reinforced cord design with quick dis. connect - Avalable with or without microphone boom - Dy. namic microphone and speakers

- Transistorized, noise-cancel. ling, dynamic - Voice response characteristics proved superior by test - Standard equipment on most new American aircraft - Ideal for all communications - Carbon nosse-cancelling type also avaılable. Both types FAA approved (ISO C58)

Who Pays This Kind Of Money For Portables These Days?

© $\$ 28.25$

- $\$ 159.95$

Thousands Of Heathkit Builders!

Why? A desire for better quality. And pride. Not just the pride of owaing, something new, but a special kind that comes from building it yourself. From watching it grow and take shape. From creating a sophisticated piece of electronics with your own hands.
True, it takes a little effort . . . about 4 to 6 hours. But it's a labor of love. And the large "exploded" diagrams and simple, step-by-step instructions make it a breeze. And a lot of fun.
And when you finish and turn it on ... Pow! You glow all over with a unique pride and self-satisfaction. You've just joined the millions of people, from 79 -year old granemothers to 11 year olds, who build Heathkits. Peofle with no special skills or technical knowledge. People like you.

Quality? The sound of these superb portables is special. A clean, bold "big-set" sound ... the kind you can't get with miniatures. Compare the performance of your Heathkit portable with any!

(A) Deiuxe 6.Transistor AM Portable.
 $\$ 28.25$

- Uses 6 " D " flashlight batteries ... only $1 / 10$ the operating cost of pocket-size portables - $4^{\prime \prime} \times 6^{\prime \prime}$ speaker for big-set sound . Slide-rule dial, vernier tuning, "thumb-touch" controls - RF stage \& double-tuned IF stage - Built-in rod antenna picks up stations miniatures can't get - Black simulated leather case - Easy 4-6 hour assembly - Kit GR-24, 5 lbs .
[B] New Deluxe 10-Band Transistor Portable \$159.95 - Tunes $150-400$ kc longwave, $550-1600 \mathrm{kc}$ broadcast, $88-108$ mc FM, and 2-22.5 mc shortwave in 7 bands - 16 transistors, 6 diodes and 44 factory-built \& aligned RF circuits - Separate AM \& FM tuners and JF strips assure the finest in portable listening • Built-in AM \& FM antennas - $4^{\prime \prime} x 6^{\prime \prime}$ speaker - Long-life flashlight battery operation - AFC, dial light, battery-saver switch - Rugged metal cabinet - Easy 10 -hour assembly. Runs on 117 V . AC with optional converter/ charger @ $\$ 6.95 \cdot K i t$ GR-43, 17 lbs.
[c] Deluxe 10.Transistor FM Portable. $\$ 44.95$ - $4^{\prime \prime} \times 6^{\prime \prime}$ speaker - AFC for drift-free reception - Treble-cut tone control, vernier tuning, headphone jack - 3 IF stages for full fidelity. Simulated tan leather case - Operates on long. life flashlight batteries - 10 -hour assembly - Kit GR-61, 6 lbs .

FREE !

Word's largest kit catalog. . . 108 pages with 250 kits for stereo/ hi-fi, amateur radio, shortwave, test, CB, matine, educational. Mail coupon, or write Heath Company, Benton Harbor, Michigan 49022.

Positive Feedback

Good starting point for any performance worth recording...

Sonotone full fidelity microphones

Wondering why your "live" home recorded tapes sound dead, lack professional quality? Stop wondering.

That accommodation mike given with your tape recorder just isn't in the same league with your recorder's pick-up capabilities.

Want results you'll be proud of? Plug a full fidelity Sonotone microphone into your tape recorder. The improvement will delight you! Because Sonotone microphones capture all the richness and vibrancy of live sound to take full advantage of your tape recorder's output capabilities.

For fine dynamic, as well as ceramic microphones . . . ask for a Sonotone microphone at your hi-fi dealer. Or write to

SONOTONE audio products

SONOTONE CORPORATION, ELMSFORD, N.Y. 10523 ELECTRONIC APPLICATIONS DIVISION EXPORT: SINGER PRODS. CO., INC., N. Y. C. CABLE: EXREGNIS; N. Y.
to 1 watt input power, 0.75 watts output, and $.005 \%$ frequency tolerance. Transmitters must be type-accepted by the FCC, meaning that both commercial and home-built equipment must be approved before use.
The associated receiver must also be certificated for compliance with FCC Part 15 receiver radiation rules. Use of the new frequencies will be subject to the condition that no interference be caused to adjacent television channels 4 and 5.

Also, the FCC does not guarantee interfer-ence-free reception on these frequencies, which are shared with some "flea power" industrial mobile users and a very few fixed circuit links. However, the 72 to 76 mHz area is by far the least crowded of all the bands available for additional radio control frequencies.
In the opinion of AMA's communications counsel. the FCC action constitutes a special recognition of the public interest embraced in modeler frequency usage and is tantamount to the creation of a new radio service especially for modeler use.

The Academy of Model Aeronautics (1239 Vermont Ave., N.W., Washington, D.C. 20005) and its crusading president, Howard E. Johnson, should be commended for their efforts in obtaining a new "home" for Part 15 modelers. Mr. Johnson hailed the Commission's action as a long-awaited advancement in radio controlled model flying. "Radio controlled flying will become safer and more popular as a result of the AMA's efforts," he said.

Want a high-pay career in Electronics?

This free book may change your life

It tells how to go about getting the key to job success in the growing electronics boom-a Government FCC License

There's a big hoom in electronics. And you can be part of it. You don't need a college education or any previous experience in electronics. The free book shown here tells you how.

In the last 15 years, the electronics manufacturing industry alone has grown from $\$ 2.7$ billion to $\$ 17$ billion, and is expected to hit $\$ 24$ billion by 1970.

Thousands of trained men are urgently needed to help design, manufacture, inspect, test, install, operate, and service electronies marvels that are making headlines. If you qualify, it means a secure, steady high-pay job with a real future to it.

Maybe you'd like to become a broadcast engineer . . . put famous radio disc jockeys and television entertainers "on the air." Or be your own boss servicing some of the more than a million two-way mobile radio systems in taxis, trucks, trains, etc. Or work alongside famous scientists developing and testing such electronics miracles as picture-frame $T V$, desk-top computers, pea-sized hearing aids, rocket guidance and control systems.

Regardless of which you choose, the secret of "getting your foot in the door" is getting a Government FCC (Federal Communications Commission) License. It's govern-ment-certified proof, respected by employers everywhere, that you have passed a standard Federal exam on the fundamentals of electronics - that you're not just an electronics handyman, but a real "pro." Many jobs legally require it.

Now, because of the importance of getting your FCC License, Cleveland Institute of Electronics has prepared a valuable 24 -page book telling you how to go about it.

NEWS FOR VETERANS:

New G. I. Bill may entitle you to Government-paid tuition for CIE courses if you had active duty in the Armed Forces after Jan. 31, 1955. Check box in coupon for complete information.

You will find out why the Comnercial FCC License is often called the "passport to success." You'll see how and why the Government issues these licenses. You'll learn how you can get your license . . . and qualify for top opportunities in Electronics.

With this book, you will receive a second free book, "How To Succeed In Electronics." It's the catalog of the Cleveland Institute of Electronics . . . first organization to offer an FCC License Warranty. (CIE will refund all of your tuition if you don't pass the FCC exam
on your first try . . after completing the course designed to prepare you for it.) You will learn why better than 9 out of 10 men with CIE training get their FCC Licenses, even though 2 out of 3 without this training fail.

To receive both books without cost or obligation. just mail the coupon below. If coupon has been removed, write to: Cleveland Institute of Electronics, 1776 East 17th Street, Dept. EX-17, Cleveland, Ohio 44114. Do it now-it may change your whole life.

MAIL COUPON FOR 2 FREE BOOKS

Please send me, without cost or obligation, your 24 -page book, "How To Get A Commercial FCC License," together with your school catalog, "How To Succeed in Electronics," of license. preparation courses.
Name__ (please print)
Address

\square Veterans check here for GI Bill information.
Accredited Member National Home Study Council A Leader in Electronics Training . . . Since 1934

Two sidebands better than one? Or, two sidebands or not two sidebands, that is the question (for you students of the immortal Bard). Anyway, the possible "new look" in CB seems to be upon us as of the announcement of the new E. F. Johnson Messenger 350 rig.

E. F. Johnson Messenger 350 Transceiver

The 350 runs that mysterious "mouse chatter" known throughout the world as single sideband (or just plain "SSB" to insiders). SSB modulation is a totally different mode than is normally used in CB rigs, an SSB rig can communicate only with other SSB rigs. If you have ever tried to listen to SSB on a regular CB rig, you'd know what we mean-

On the plus side of the coin, SSB offers smashingly good communications and it's been in use by the military and Hams for a number of years. Without going into a whole spiel on the technical aspects of SSB (believe me, neither of us would fully understand it) it offers up to 30% greater range over ordinary 5 watt amplitude modulated CB rigs when conditions are ideal. Under actual use during bouts with high noise, intense skip, and all kinds of other rotten things, SSB can scatter your signal up to 3 times further than standard CB sets.
The basic premise of SSB is that, while a regular $C B$ set transmits a carrier along with both of its characteristic sidebands, the SSB system eliminates the carrier completely and one of the sidebands. This concentrates the
signal into the one sideband for maximum punch. You can use either the upper or lower sideband.

The Messenger 350, for instance, is capable of operating on 2 channels, but turns itself into a 4 channel rig via SSB. Let's say your 2 channels are 9 and 11. You would be able to operate on $9 U S B$ (upper sideband), $9 L S B$ (lower sideband), IlUSB, and $11 L S B$. This may sound like advertising hanky-panky, but 'taint! If you are on 9USB, some other SSB station can operate at the same time on $9 L S B$ and neither of you would know the other was there. Sort of like that old song to the tune of the Irish Washerwoman: "McGinty is dead, McCarthy don't know it; McCarthy is dead, McGinty don't know it; Both of 'em dead in the very same bed, and neither 'em know the other is dead."

Anyway, it can take our 23 channels and make CB a 46 channel affair.
Specifically, the 350 is all solid state with diode (rather than relay) switching. It weighs 6 pounds, operates from 12 volts (AC supply optional), or from rechargeable batteries. A PA feature is included. Comes complete with 2 crystals.
Details are available from E. F. Johnson Company, Waseca, Minn. 56093.
Hooked on sky hooks? Here's a new one to hook onto the business end of your rig, it's a weirdo looking thing known as the "Ringo" (manufacturer claims it's "a new CB star).
Low priced at $\$ 16.95$, this base station

Cush-Craft Ringo Antenna, Model CR-1
antenna is a full $1 / 2$-wave vertical with an exclusive "power ring" (sort of an aluminum bagel) at the base which is claimed to drag that last milliwatt of signal out of its hiding place in your rig and fling it into the ether with 3.75 decibel gain.

The Ringo takes a 52 -ohm direct coaxial cable feed, offers a low down radiation angle, and has a direct DC ground to eliminate much of the static we all know and love so well.

"CB Stickers" by S. Nussbaum

Ringo is produced by Cush-Craft, 621 Hayward Street, Manchester, N. H. 03103.
sick Schtickers. Well. we thought we had seen just about everything but when the mailman delivered us a sheet of "CB Schtickers" we knew that we must be doing something right (or wrong).
"CB Schtickers" are a sheet of 30 gummed CB-oriented signs (27 different) containing such gems of wisdom as: "Please engage brain before pushing mike button," "TVI complaints answered at rear door only," "Keep your cotton pickin' hands off the goodies," and "Support CB in Bosnia \& Hercegovina," to list a few. You get the drift.

Paste 'em on your rig, on your QSL cards. your mobile unit, even on your Aunt Hattie's Honda. If these things don't create a major sensation in CB, we'll eat our ground plane.
"CB Schtickers" are available from S. Nussbaum, 1440A 50th Street, Brooklyn, N. Y. 11219. Price is $50 ¢$ for a sheet of 30 , or 3 sheets for $\$ 1$, postpaid. N. Y. residents add applicable sales taxes.

CB Buyers' Guide. Just in case you did not spot it on the newsstand when you picked up this copy of Radio-TV Experimenter, your editors have put out a CB annual which we titled CB Buyers' Guide. Get your copy! It nit-picks 55 different CB rigs and tells you how they stack up-a must guide for your shack.

"If it hasn't boosted your spare-fime earnings during that period, just return it and owe nothing!"

Here it is! The most amazing guarantee offered on any radio-TV course anywhere! We'll send you Abraham Marcus' course to use FREE for one full month! If in that time you haven't made more money fixing radios and TV sets, just return the books to us and pay not a penny!
Why do we make this sensational offery Firnt, becanse these buoks are so eass to Hse. They are writtell int the same clear. rasy-tu-understand larkiage that made the author s Enements

 For example, obsee son master the has houk 300 are ready ou busmes-rear of all service calls.
DON'T WAIT! You risk wothing when you send the coupon at right. You don"t have to keed the books and bay for them unle-s yon actully make extra money tixing radion and or sets. Even when you deride to kexp them, you pay on tasy terms. Nail the coupon huw.

WHAT YOU GET IN THESE 3 GIANT VOLUMES

ELEMENTS OF TELEOISION SERVICING. 2nd Edition. Analyzes and hlustrates more TV defects than any other book, and piovide complete. step-by-step procedure for correcting ench. oun ean the first time all details. theory and servicing procedures for the RCA 28.tub colur tilevision receiver, the EBS.Columbia Moxlel RCA 28.tube color met. and tie Motorola 19 -inch color-receiver.
RADIO PROIECTS. Build your own recelvers! Gives you 10 easy-to-follow projects. inelinding crystal detector rectucy amplitertectur recevel-reger eraner-AC-DC superheterodyne receiver-etc. Edition. Here is everything you need to know about radlo repair, replacement, and read-gelf-training handbook shows you how to locate and remedy defects quickly. Covers ThF receivers; superheterodyne receivers; shortwave, portable. automnome receivents such as meter, vacuum-tube volimeters, tube chechers. etc.. ele

MAIL THIS COUPON

```
Prentice-Hall, Ine., Dept. 6702-KI
Englewood Cliffs, New Jersey
Hlease send me Abraham Marcun TV & RANIO RNYAIR COLIRSF
is valumes) for 10 bays FRrif, examination. Within 10 days I will
ejther return it and owe nothing. or'semi my titst gayment of
$tifir, plus a few cents,h, if I am not satlslied l may return it
and you will refund my tirst paymert. Or % , wa m month for two
and send you two more payments of $0.65 a month for two
months.
Name
Address
City-
                                    Stale___Z__Z
Dept. 
```


Color a Go-Go

A kit version of the Thomas COLOR-GLO Transistor "Artiste" ART-1 organ is now available from the Heath Company. The Color-Glo feature makes it possible for anyone, regardless of musical training or background, to play complete songs with melody, harmony and bass after only a few minutes of practice.

Thomas Color-Glo Transistor "Arfiste" Organ Kit
The method is an ingenious, yet simple one. Each white key on the upper keyboard lights up with a letter to follow. By simply matching the letters on the music with the letters on the
keys, you play the melody. For harmony, there are 3 red heys, 3 green keys, and 3 black keys on the lowet keyboard. With your left hand, you press and hold the notes that match the background color in the Thomas Color-Glo music book (included with organ). To add the bass, foot pedals are marked with the same colors as the harmony notes. You just press the corresponding pedal, changing to different colors as you change with the left hand. The Color-Glo key lights may be turned off anytime. leaving a beautiful spinet organ console.

Additional features include 10 rich organ voices (a big must in any organ); variable repeat percussion to add banjo. mandolin, balalaika effects; 13 -note heel and toe bass pedals; 2 overtanging 37 -note keyboards; 12" $^{\prime \prime}$ speaker; 50 -watt EIA peak music power amplifier; 2 levels of vibrato intensity; manual balance control; variable expression pedal: variable bass pedal volume, and a handcrafted, handrubbed walnut cabinet. The transistor plug-in tone generators, the heart of the organ, are warranted for 5 years. All parts are genuine Thomas factory-fabricated components. Total kit construction time is about 50 hours, and requires no special skills, tools or knowledge. Designated model GD-325, the new organ is priced at $\$ 349.95$. A matching walnut bench is available at $\varsigma 24.95$. Full information is yours by writing the Heath Company, Dept. RTVE, Benton Harboz, Michigan 49022.

Tape Recorder Kit

The 1966 Model KG-415 Knight-Kit Tape Deck is offered by Allied Radio Corp., Chicago, in their "Superba" series. Easily assembled, solid-state plug-in modular circuitry provides all the electronics needed for exceptional 4 -track stereo and monophonic record and playback. Preassembled Viking tape transport is specially built to Knight-Kit specifications:

Knight-Kit Model KG-415 Tape Deck Kit

now...a dozen tools for dozens ol jobs in a hip pocket set!

XCELITE INC, 64 BANK ST., ORCHARD PAPK, N.Y., 14127 Send Catalog 162 with information on 99PE-50

name

address
city
state \& zone
L

Fill in coupan for a FREE One Year Subscrip. tion to OLSON ELECTRONICS' Fantastic Value Packed Catalog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Vale ues. Credit plan available.
NAME \qquad
ADDRESS
CITY \qquad ZONE \qquad STATE
If you have a friend interested in electronics send his nome and address for a FREE subscription also.

OLSON ELECTRONICS INCORPORATED

479 S. Forge Street Akron, Ohio 44308

New Products

Three 4 -track hyperbolic heads direct tape monitoring, sound-on-sound and echo recording; selector control with record and playback operation indicated by six illuminated windows; VU meters indicate record and playback sound level; single knob tape motion control with positive-action erase-protect pushbutton switch; push-to-reset digital counter for quick indexing of recorded selection; separate monitor-level controls for precise balance between recorded signal and source.

The Knight-Kit KG-415 with all parts, assembled Viking transport, detailed assembly instructions and 7" takeup reel is priced at $\$ 249.95$. Walnut Wood Base $\$ 19.95$. Full information available from Allied Radio Corp., Dept. 20, 100 N. Western, Chicago, ill. 60680.

CB Test Gear

The new EICO Model 715 Transmatch is a compact, portable, easy-to-use handy "laboratory" that quickly indicates the status of all the vital RF characteristics of your equipment 10 help you maintain optimum operation. It is designed for both the professional and hobbyist in ham \& CB work, for field or shop.

EICO Model 715 Trans/Match Ham-CB Test Set
At the flip of a switch, the 715 gives you fast, accurate reading/checking of: standing wave ratio, true RF power, modulation distortion, and relative field strength. Rugged, all solid-state, self-powered, sensitive (with $100 \mu \mathrm{a}$ meter), the 715 handsomely complements the EICO line of ham and CB transceivers. Kit is $\$ 34.95$, wired is $\$ 44.95$. Available from 2500 E/CO dealers coast-to-coast. Write for free catalog to E/CO Electronic Instrument Co., Inc., 131-01 39th Avenue, Flushing, N. Y. 11352.

24-Hour Clock

While time has been measured by mechanical clocks since 1363 when Henry DeVick invented the earliest self-contained counterpart of the modern clock, reading of dial-faces has made for "loose time-felling." The majority of persons, in every age group, have been telling time all their lives, habitually saying, "It's about a quarter to 10 " cr "It's a little after 11." This new fast air-age now makes time-telling accuracy a required habit free of "clock guessing." Tymeter's "Time-at-a-Glance" 24-hour electric numeral clock gives the time automatically and without need for "confusing hands." This direct read-out clock is destined to save countless lost minutes in the lives of all clock users. Great for hams, commercial operators and SWL's who must maintain accurate time logs. Photos shows the Jefferson $24 \mathrm{H}-1 / 4$ Tymeter Clock, walnut or ebony, which sells for $\$ 15.00$. For more information on other models write to Numechron Co., Pennwood. Dept. RTV, 7249 Franstown Avenue, Pittsburgh, Pa. 15208.

Tymeter 'Time-at-a-Glance" 24 -hour Clock

Loudspeaker Line-Up

Just a glance at the Wolverine loudspeaker line by Electro-Voice shows that loudspeakers have come a long way since the early days of high fidelity. The slim, sturdy die-cast frames, finished in misty green metallic, are good examples of progress that has been made in the art. Two eight-inch speakers, the LS8 and LT8: two twelve-inch speakers, the LS12A and LT12: and the fifteen-inch LS15 make up the

Electrovaice's Wolverine Loudspeaker line

Here's your new catalog of quality electronic kits and assembled equipment . . . your shopping guide for TV set kits, transistor radios, voltmeters, scopes, tube testers, han gear, PA systems, and a host of other carefully engineered products. Every item in the Conar catalog is backed by a no.loopholes, money back guarantee. It's not the biggest catalog, but orce you shop its pages you'll agree it's a mong the best. For years of pleasurable perfcrmance, for fun and pride in assembly, mail the coupon. Discover why Conar, a division of NatiJnal Radio Institute, is just about the fastest growing name in the kit and equipment business.

EARN B\|GMONEY

Service household appliances, rewind motors, sharpen mowers, saws, do house wiring, etc.

EVERY NEIGHBOR
 EVERY STRANGER A PROSPECT

Learn at home by building valuable testing kits, repairing your own and neighbor's appliances. It is not unusual for appliance repairmen to charge on the basis of $\$ 5.00$ to $\$ 6.00$ an hour!
FREE ILLUSTRATED BOOK We show you how to make repairs, secure business, what to charge, where to buy needed parts wholesale. Send today for your FREE book and special Pay Later Form.

CHRISTY TRADES SCHOOL 3214 W. Lawrence Ave., Dept. A-171I, Chicago, 60625

New Products

component-quality Wolverine line. The three speakers prefixed LS are Radax coaxial types. In these units two cones divide the sound; one for maximum bass reproduction and a second, smaller cone for efficient high-frequency performance. The Wolverine LT12 uses a Radax coaxial cone with the addition of E-V's exclusive Sonophase VHF driver to ensure reproduction of the all-important treble range. The LT8 uses a long-throw eight-inch woofer cone for extended low-frequency response while the Radax coaxial section imparts realism in the mid-frequency areas. Lifelike reproduction of the highest musical overtones is delivered by a dynamic very-high-frequency driver. Three separate radiating elements in the LT8 have been blended to produce a cohesive wide-range character difficult to achieve in a loudspeaker only eight inches in diameter.

The striking aspect of the five loudspeakers in the Wolverine line is the styling of the speaker frames, or "baskets," an important consideration for those who plan to use an existing closet or storage area as an enclosure. Speakers of the past were apparently never intended to be seen, or so their ugly frames would indicate. Many do-it-yourself builders. interested in quality sound in rather limited space, have found that the installation of these units, attractive to the eye as well as to the ear. offers the ideal solution to the enclosure problem. The nationally advertised prices of Wolverine speakers range from $\$ 20.00$ for the LS8 to $\$ 36.00$ for the three-way LT12. Want more poop? Write to Electro-Voice, Inc., Dept. RTV, Buchanan, Michigan 49107.

Power Packing Transceiver

Maximum transmitter power has been compactly packaged in a new $80,40,20,15$ and 10 meter transceiver, the SR-2000 made by The Hallicrafters Co. Transmitter power input is 2000 watts P.E.P. on SSB and 1000 watts on CW. With all this power, the SR-2000 measures only $7 \frac{1}{2 \prime \prime} H \times 161 / 2^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D}$-just a hair more than one cubic foot. The transmit section has two 8122 output tubes. It also has a variable pi network. Carrier and unwanted sideband suppression is rated at 50 db , and distortion products are 30 db . The audio output

Hallicraffers Model SR-2000 Amafeur Transceiver
is measured at 500 to 2600 cps at 6 db . Cooling of the section is handled by an efficient twospeed air blower.

Sensitivity of the receive section is less than 1 microvolt for a 20 db signal-to-noise ratio. The audio output for driving a speaker is 2 watts, and overall gain is 1 microvolt for $1 / 2$ watt output. Receiver first IF is $6.0-6.5 \mathrm{mHz}$, and the second IF is 1650 kHz .

A special feature which equips the SR-2000 for round-table net or CW operation is Hallicrafters' exclusive Receiver Incremental Control. This feature makes it possible to adjust the receiver $\pm 2 \mathrm{kHz}$ independent of the transmitter. There are a number of other features of interest to amateurs. The tuning dial is calibrated to 1 kHz . The linear gear drive has less than 1 kHz readout. IF noise blanking is adjustable. Built-in features also include VOX plus break-in CW and PTT. CW sidetone is also built-in. Provision is made for a VFO/DX adapter. The SR-2000 has a 2.1 kHz crystal lattice filter, and 100 kHz crystal calibrator, and the VFO tuning range is 500 kHz . Front panel controls include: band selector; tuning; final tuning; final loading; RF level; microphone gain; AF gain; calibration adjustment; operation condition, Off/Standby/MOX/ VOX; and operation mode, CW/Tune/USB/ L.SB.

The amateur net price of the SR-2000, including all built-in features and all crystals for 28.0 to 30.0 mHz , is $\$ 995.00$. A companion P-2000.AC power supply/speaker for either $115 / 230$ volt AC operation has an amateur net price of $\$ 395.00$. The power supply has a built-in speaker, all meters for final plate current and voltage, and hi-lo power switch. Additional engineering data on the SR-2000 and companion P-2000AC power supply may be obtained by writing The Hallicrafters Co., Dept. RTV, 5th and Kostner Avenues, Chicago, Illinois 60624.

Stereo Amp

Lafayette LRE-80 Solid-State Stereo Amplifier
Lafayette Fadio introduced its new model LRE-80 solid-state stereo amplifier. A 29 -semiconductor circuit features instant operation, without hum; noise or microphonics; with power to drive any stereo speaker to its full capacity; and with special electronic short-circuit protection. Controls and inputs include: Bass, treble, dual volume, 5 -position mode, 5 -position input, 4-position output including power/off, speaker phase and headphone switch,

FULL OF TOP QUALITY ITEMS-

Transmitters, Receivers, Power Supplies, Inverters, Microphones, Filters. Meters, Cable, Keyers, Phones, Antennas, Chokes, Dynamotors, Blowers, Switches, Test Equipment, Headsets, Amplifiers, Converters, Control Boxes Indicators, Handsets, etc., etc. SEND 254 (stamps or coin) for CATALOG and receive 50c CREDIT on your order. Address Dept. 31.

P.o. Box 1105 R ADIO, OHAD $\cdot 45802$

TEST ALL RADIO and TV TUBES!

The revolutionary new nome tube tester that's fast, easy and accurate. Tests all radio and TV tube filaments, picture tubes, appliances, lamps, heaters, fans, etc. Full price including batteries, $\$ 2.49$ plus 25 c for postage and handling. Complete instructions included. Fully guaranteed.

Send certified

 cheque ormoney order to

Hughie Enterprises, 363 Dieppe Street, Dept.RE-2 London, Ontario, Canada

TAPE THIS AD TO THE BACK OF YOUR TV SET ALL TV-RADIO нескмм TUBES
All Brand New, all at a flat discount price of only No exceptions
irtupardiess of fist price. including the new color tubes.

- All Tubes ist QuALITY
- All Sold on Written

24-MONTH WARRANTY

- All orders SHIPPED 1st

CLASS SAME DAY REC'D.! Order replacemente for your defective tubes a flat $\$ 1.00$ each, plus
soepogtagn \#nd handling for your entire order. Address Dept. ATif-798 UNIVERSAL TUBE CO. ozone Park, N. Y, 11417

FRANCHISE OPPORTUNITY: Universal Tube Co. can set you up in your own hiohly-profitable business as an Electron Tube Distributor. with an exclusive territory, selling to appliance dealers and/or servicemen. For full details write immediately to Franchise Manager, address above.

TRANSISTORIZED CONVERTER KITS $\$ 5.00$ EACH

Three kits available. Marine $2-3 \mathrm{mc}$, police \& fire, high band $100-200 \mathrm{mc}$, low band $26-60 \mathrm{mc}$.
1 mc tuning on car radio. Full instructions.

ANY KIT $\$ 5.00 \mathrm{pp}$. WIRED $\$ 15.00 \mathrm{pp}$.
 MESHNA 19B ALLERTON LYNN, MASS. 01904

LEARN

FLx TV, design automation systems, leam transistorn, complete electronics. College level llome Study courses taught so poulete understand them. Earn more in the highly paid electronics industry, Computers, Missiles, theory and practical. Kits furnished. Over 30.000 graduates now employed. Resident classes at Chtcago campus if desired. Founded 1934. Catalog.
AMERICAN INSTITUTE OF ENGINEERING \& TECHNOLOGY
$1139 E$ West Fullerton Parkway Chicago, Illinois 60614

5 LIGHT SENSITIVE CELLS

forl hectric eyss, door openers Just and SWITCHING DEVICES
$\$ 1.00$
These light sensitive ceils are the same fype cells used in computers and satellites same type cells used in computers and satellites to transmit light energy into eiectrical energy Have fun constructing your own elecrical circuits. Limited tume offer
SOLAR SYSTEMS INCORPORATED
8241 N. Kimball Avenue Skokie, Illinots No. \$S-1000 America, Russia, London. Australia, Amateur Citizens, Police, Also USA Broadcast. 5 ing dial. Wh. onfy 3 10 MC. Calibrated tunWhOLE WORLD TALKING DAY OR NIGHT! SEND ONLY $\$ 2.00$ (cash, ek, mo.) and pay postman $\$ 7.85$ COD postage or send $\$ 9.95$ shown. Free Broadcast Coile Basic Rit as if you order now! Available Plastic Case

THOSE FABULOUS FUEL CELLS

Theory-minded men will appreciate this up-to-date feature in the July/August issue of fiementary electronics which is presently at your newsstand. It's all about electrolysis in reverse . . . the latest in space-age power!
"have brains, will travel,"-Electronic computers will make the split-second decisions for high speed passenger trains at Canada's 1967 World's Fair. Use the coupon to subscribe.

ELEMENTARY ELECTRONICS

RTV798
505 Park Avenue/New York, N. Y. $/ 10022$
Begin my subscription to ELEMEN-
 TARY ELECTRONICS with the Sept./ Oct. issue. I am enclosing $\square \$ 4.00$ for 1 yr.; $\square \$ 7.00$ for 2 yrs. (Foreign: add 75 ${ }^{\text {c a yr.) }}$

Name
(please print)
Address
City
State
Zip

New Products

rocker switches for: low filter; high filter; loudness; tape monitor; stereo headphone jack (for tape head or phono input); plus stereo inputs for tuner, tape recorder, plus aux. 1 and 2. Two $A C$ convenience outlets, 1 switched. The LRE80 specs are-Power Output: 80 -watts IHF (40-watts each channel). Response: $\pm 1 \mathrm{db}$, $22-24000 \mathrm{~Hz}$. Input sensitivity for rated output, phono magnetic 2.5 mv , tape head 2 mv , high level aux. 0.25 V. Harmonic distortion; less than 1%. Headphone jack impedance 8 ohms. Extruded aluminum gold finish panel. With metal case. Size: 131/16 W x $41 / 2$ H x $101 / 2$ D. For $110-120$ volts, 60 cycles AC. Price is $\$ 119.95$. For more information write to Lafayette Radio Electronic Corporation, Dept. KCP, 111 Jericho Turnpike, Syosset, N. Y. 11791.

Q-Multiplier

A new Q-Multiplier that can be used with any communications receiver having an IF frequency between $450-460 \mathrm{kHz}$, is now added to the many kits made available to communications hobbyists by the Heath Company. With this electronic filter, the receiver IF selectivity is greatly increased (effective "Q" of 4000). It can be used to produce a sharply-peaked IF curve for CW reception, a broad peaked IF for phone operation or a deep rejection notch to eliminate a closely-interfering heterodyne.

Heathkit Model GR-64 Shortwave Receiver Kit
Both peak and notch positions are tuneable to any point on the receiver's IF bandpass. In addition, the unit may be used with a receiver that already has an IF filter to obtain two simultaneous functions. For example, the IF filter could be set to peak the desired signal, and the Q-Multiplier used to null an adjacent signal. Designated model GD-125, the new Q-Multiplier comes complete with a built-in power supply for 117 VAC operation, connecting IF cable, plug and socket for attachment to the receiver, and a handsomely styled charcoal cabinet and gray front panel that matches the Heathkit GR-64 Shortwave receiver. The GD-125 assembles easily in around 8 hours, and sells for $\$ 14.95$. For full details, write Heath Company, Dept. RTV, Benton Harbor, Michigan 49022.

$\square \square$David Sarnoff. The life story of the guiding genius of the Radio Corporation of America is one of achievement against tremendous odds. Few men in our times have started from the bottom of the pile and risen so fast to the top in their chosen fields.

There is human drama in his personal story, in his progress from a ghetto hamlet in Russia through New York's steaming slums; from office boy at fifteen to the presidency of one of the nation's major co-porations before he was forty, to leadership in the communications and electronics industry and great responsibilities as advisor to five Presidents and to leaders of the Armed Forces.

There is drama, too, in his professional life, from the moment when the twenty-one-year-old wireless operator sat for three days and three nights at the Wanamaker department store radio station in New York, with all other radio stations silenced by President Taft so that he could receive the names of survivors in the Titanic disaster. For the first time the name of David Sarnoff, already known among his colleagues for his skills as a wireless telegraph operator, was heard across the nation.

Hard cover 372 pages $\$ 6.95$

And there is sharp drama of pusiness conflict, of struggles within and between companies, highlighted by monumental legal battles and decisions that hazarded tens of millions of dollars on one man's refusal to give up his vision.

Vision has, in fact, been Sarnoff's unique contribution. In a technical and scientific environment, his strength has lain in discerning the long-range potentials of electronic research, then throwing his faith and energies behind their development. Over and over again, he pitted that faith not only against skeptics in the

BUIIII THE SGM phecision netalle Resistance box ANI SAVE MONEY

Designed so that the electronic experimenter can get any value of resistance at 1% accuracy. Made of precision components, features fast fingertip switching from any resistance. value from 1 ohm to $1,111,111$ ohms within seconds. Add or subtract as little as 1 ohm with 1\% accuracy. Put it together in less than 2 hours.

SCIENCE \& MECHANICS KIT DIVISION 505 Park Ave./New York/10022
Please send me the Decade Resistance Box in kit form $\square \$ 24.95$

fully assembled $\$ \mathbf{\$ 2 9 . 9 5}$

If I am not completely satisfied, I will return it within 10 days for a complete refund of the purchase price.
add $\mathbf{1 0 \%}$ for Canadian \& Foreign orders.
New York City residents add 5% for NYC sales tar.
(please print)

ADDRESS

GITY
STATE
$21 P$
\square Check or money order enclosed; shlp post-pald
\square Enclosed $\$ 3.00$ deposit. Ship balance C.O.D., plus postage \& C.O.D. charges.

HANDY?

Then build Star-Lite
Here's an ambitious but rewarding undertaking for those with the time and inclination. Star-Lite has an overall length of $271 / 2 \mathrm{ft}$. and accommodates 4 persons in 6 ft ., 4 in . bunks with enough space for private "head" and working galley. You can build this beauty from Boating Journal Craft Print \#188. Interior space and accommodations are close to those found in the usual 34 ft . sailer because of the short forward overhang. Star-Lite is primarity a sailing ship, therefore you'll need only a small auxiliary engine-not to exceed 100 cu . in. displacement. Every detail is explained in Craft Print \#188.

BOATING JOURNAL

BOATING JOURNAL
Craft Print Division/505 Park Avenue/New York, N. Y./10022
Enclosed is $\$ 3.00$. Please send me Craft Print \#188, Star-Lite. I understand that if I am not completely satisfied, I may return the Craft Print within 10 days for a complete refund. (Allow 3-4 weeks for 4 th class delivery. Ist class, add 50 c .) Add 10% for canadian \& foreign orders. N.Y.C. residents, add 5% for sales tax.
Name
Address
city.

WHAT MAKES RADIO-TV EXPERIMENTER SUCH FASCINATING READING?

It's just that in this period of time, electronics has progressed to such a fine art, that it appears in almost every phase of our existence. Subtle at times, overpowering at other times, but certainly we are living in an era where a knowledge of electronics is basic.

And that's what makes RADIO-TV EXPERIMENTER so interesting. It covers the field, whether it be theory, construction; hi-fi or audio; ham, CB, SWL; AM, FM, TV, or so many of the other related electronics subjects. It covers them, reports them, describes them, illustrates them; RADIO-TV EXPERIMENTER is certain to contain that subject of electronics which is most important to you . . . that's why it's so fascinating. Try a subscription and see!

Bookmark

industry but at times among associates in his own company.

Mr. Sarnoff's impact on our times has extended far beyond his professional domain. He has been active and influential in performing notable services for his country.

The story of David Sarnoff's rise from a simple background to become an authentic son of the twentieth century is an American saga in the best sense of that term. Told with skill and sympathetic understanding by Eugene Lyons (Senior Editor, staff of Reader's Digest), this narrative of an extraordinary career is one of compelling human interest.
$\square \square$ Chit-Chat on Computers. Here is a book to take the mystery out of computer language and operation, a book that really and truly explains (among many things) output and input, gates and bits, flip-flops and negaters, binary addition and heuristic trial and errorterms that have frequently been a puzzle to every layman. It is entitled Electronic Brains and authored by Rolf Loberg and Theo Lutz.

Specially aimed at the non-mathematically minded, this book is written in a conversational style, supplemented by amusing drawings. Together these make crystal clear to the untutored reader how machines and punch cards and tapes are used to sort out and analyze all types of information, convert them into electronic impulses, which can then be stored in memory units to form the framework for analysis of new information, etc.

Chapter by chapter the reader is carried along on words of wit, entertainment and brilliant analogies, utilizing, for instance, games such as "What's My Line" and the Marienbad match game. The authors indelibly impress programming on your mind, for example, by comparing it to Swiss music boxes. The authors draw the reader, young or old, so shrewdly into the fascinating world of computers that it becomes sheer joy to get absorbed in this subject that for so long has been considered strictly taboo, almost impenetrable to the uninitiated.

A reading of this book will enable you to use basic knowledge as a springboard to more ad-
vanced technical studies. Pick up your copy at a local bookstore or write to Sterling Publishing Co., Inc., Dept. RT, 419 Park Avenue So., New York, N. Y. 10016.sWL's Silent Partner. There's little more that anyone can say about the 1966 World Radio TV Handbook that has not been said about the nineteen previous editions. This 304 -page handbook is the only up-to-the-minute guide to all broadcasting radio and TV stations throughout the entire world. It's pretty doubtful that any SWL should be without a copy of the new edition at his elbow. The 1966 WRH lists fre-

quencies, callsigns, programs, addresses, power, ID signals, personnel, etc. of thousands of broadcasters-country by country. You can add to this a lot of useful tables on time conversion, satellites, DX clubs, postage rates, etc. With its fine print and jam-packed pages, it will take days to read. The 1966 World Radio TV Handbook is sold mail order from Gilfer Associates, P.O. Eox 219, Park Ridge, N. J. 07656 -who, incidentally, carry a variety of other goodies for SWL's.

Do you know which national contest you can enter to
$\$ 5000$ scholarship?
A Plymouth Barracuda? A trip abroad?

Find out all about this exciting contest, and more, in "Contests You Can Enter in '66.' It's all in the

NEW 1966
Mid-Year Edition
at your newsstand \$1.00

- New kit builts - Ready-to-run cars * - new sets * all featured and impartially rated in test reports compiled by Consumers' Research. 96 pages, featuring articles i.e. "Layouts Where Space is A Problem;" "Ready-ToRun, Kit Or Scratch-Built;" "Know Your Motors;" "Painting \& Decorat. ing "A great magazine for youths of all ages. At your newsstand or use the coupon.

MODEL RACING BUYERS' GUIDE
505 Park Avenue/New York, N.Y. 10022 RTV 798 Enclosed is $\$ 1.25$ (includes postage * handling). Rush me my copy of MODEL RACING BUYERS' GUIDE.

Commercial QSL's

How can I get QSL from commercial code stations which broadcast CQ, CQ, CQ? Please help.
-R. R., Bristol, Conn.
According to the law, no one is supposed to reveal the content of any radio transmission except to the addressee, or even that a transmission took place from any but an amateur or broadcasting station. While CQ is a general call, in this case it is a call addressed to other stations in a network (not to listeners-in). Since it is not illegal to make known that such a transmission ever existed, don't expect an acknowledgement (QSL). Sorry I can't help you.

S-Meter for TV

How can I connect " S " meters to my TV set for both audio and video?
-M. G., Chicago, Ill.
The first diagram shows an $0-1$-ma DC milliammeter connected between the cathode of an AGC-controlled sound-IF-amplifier tube and the cathode of the AF-power-amplifier tube. The RF choke (RFC) may be required to avoid

upsetting the IF circuit. To measure the relative strength of the sound-channel signal, connect a 0-50 DC microammeter in series with the grid-return resistor of the sound-IF amplifier/limiter as shown. Potentiometer R2 is a meter shunt which should be adjusted so that the meter won't indicate off scale. Beware. If your TV set is one of the power-transformerless wonders, these simple circuits might not be suitable.

Definitions

What are AM, FM, HF, VHF and UHF and what are their applications?
-A. S. S., Karachi, Pakistan
AM is amplitude modulation of a radio-frequency carrier for broadcasting and communications. FM is frequency modulation of a radio-frequency carrier for high fidelity broadcasting, land mobile and marine (in the VHF band) communications. HF means high frequency, the 3 - to $30-\mathrm{mc}$ portion of the radio spectrum. VHF means very-high frequency, the 30 - to $300-\mathrm{mc}$ portion, and UHF means ultrahigh frequency, the $300-3000 \mathrm{mc}$ portion of the radio spectrum. The HF bands are used for long-range communication, except in the $27-\mathrm{mc}$ citizens band in the U.S. The VHF bands are used for television and FM broadcasting and air, marine and land-mobile radio communication. The UHF bands are used for television broadcasting, land-mobile communication, telemetry transmission, radar and point-to-point (microwave) communication.

TV-leadin Sky Wire

How can I use my TV antenna for AM and $F M$ radio reception?
—H. J., Pocatello, Idaho
Use a three-position, double-pole wafer switch and connect the roof-top antenna twin lead to the switch rotors and leads to the TV set and AM-FM tuner as shown in the diagram. For FM and TV, the antenna is used as a horizontal-

ly-polarized directional antenna as normally intended. For AM:, the antenna assembly and the twin-lead form a capacitance-top, vertical antenna.

Ham Radio Log

Why don't you publish the frequencies and call letters of ham stations?
-C. B., Seattle, Wash.
Since there are more than 250,000 ham licenses, it would require a very large book. Ham call books are available at many radio parts stores. Harns are not assigned specific frequencies. They may operate on any frequency within bands covered by their particular class of license.

W1AW Code Practice

Who broadcasts code practice?

 $-R$. K., Morton Grove, Ill.WIAW, operated by the American Radio Relay League, transmits code practice at 8:30 P.M. Central Time. The station operates on 1820 kc (160 -meter band), 3555 and 3945 kc ($80-$ meter band), 7080 and 7255 kc (40 -meter band), 14,100 and $14,280 \mathrm{kc}$ (20meter band), 21,075 and $21,330 \mathrm{kc}$ (15 -meter band), and on 23,080 and $29,000 \mathrm{kc}$ (10 -meter band). The schedules are published in the magazine QST.

There's Still Hope

Where can I buy unusual parts for obsolete communications equipment?
-L. C., Bronx, N. Y.
Try Spera Electronics, 3220 37th Ave., Long Island City, N. Y. 11101. Spera carries a large inventory of new, used and surplus parts and equipment, much of it listed in their free catalog. Just drop them a line.

WHAT TO KEEP?

I have a very old Columbia-Kolster electric phonograph which was considered to be one of the best sounding instruments when it was new. It plays only $78-\mathrm{rpm}$ records. How can 1 modernize it?
-L. G., San Francisco, Calif.
Replace the turntable, motor and pickup with modern ones or a record changer. You will also need a preamplifier (G.E. A1-203 or UPX300 B , etc.) if you use a magnetic pickup cartridge and want to use the old amplifier. However, the amplifier, which was magnificent in its day, is not capable of what is considered hi-fi today. The speaker too was tremendous. But, replace both the speaker and the amplifier with one that will accommodate the new pickup without an external pre-amplifier.

Does

 Buying Hi-Fi Components Confuse You?It's no wonder with so many to choose from. Just which do you buy-which is really best for your home.
If this is your problem, or if you just enjoy keeping up.todate on the newest components available, the new MidYear 1966 edition of HI.FI BUYERS' GUIDE' will be a most valuable companion. It's at your newsstand.
You'll find a thorough and detailed section devoted to test reports on high fidelity integrated stereo amplifiers (preamps and power amps on one chassis-both stereo solid state and vacuum tube models), high fidelity stereo phono cartridges and high fidelity stereo headphones. There are 96 highly informative pages which will aid you in making your next high fidelity purchase an easy and funfilled task.

HI.FI BUYERS' GUIDE/505 Park Avenue/New York, N.Y./10022 RTV 798
Please send me my copy of HI.FI BUYERS' GUIDE. Enclosed is $\$ 1.50$ which includes postage \& handling.

Name

Address
city. State

if you've ever had a hankering "to-do," don't dare miss 1001 HOW-TO IDEAS

There's sure to be a feature on whatever "how to"" subject that might be of interest to you. That's how really complete this issue of 1001 HOW-TO IDEAS is- Ways and shortcuts for the Handyman, for the Homemaker; on Gardening; on projects for children; on maintenance; on cars-even slot cars; on camping, fishing and hunting; on photography; on radio and TV. And more! As a matter of fact, you'll find more how to ideas than you can shake a hammer at.
Available at your newsstand or write for your copy.
1001 HOW.TO IDEAS
RTV798
505 Park Avenue/New York, N. Y./10022
I am enclosing $\$ 1.00$ (includes postage and handling). Please send me my copy of 1001 HOW.TO IDEAS.

Name
(please print)
Address
Cit
City___________
State \qquad Zip

The new \& improved supersensitive S\&M photo-meter

 now better than ever!

 now better than ever!}

Every photographer knows that the high quality of his photos depends on the accuracy of his equipment. Here is a precision instrument that meets the highest standards of any meter available. MODERN PHOTOGRAPHY says, "This is certainly one of the most unusual, most versatile and most sensitive exposure meters at any price today." U.S. CAMERA wrote "It is as sensitive as anything on the market. It's so adaptable-those 4 separate ranges of sensitivity have the effect of spreading the meter's scale."
Now, this S \& M is better than ever! A new design feature, the use of plug and jack connections for probes, makes interchangeability of probes possible. Users of this most outstanding Light Meter can now easily find out what sensitivity values of probes are best suited for their specific applications. A new plastic cap protects the probe and permits diffused light to be read with the cap on (the probe is normally used to take readings with the cap removed). Another improvement is the battery test circuit, which indicates instantly the condition of the mercury cell that powers the unit.
This Photo Meter is utilized extensively in Photo Labs, Physics and Research Labs, Hospitals, High Schools, Universities and many industries. It is successfully used with movie or still cameras, microscopes and telescopes. For Photomicrography it is a MUSTl It can even be set up for use as a densitometer.
The S \& M Supersensitive Photo Meter uses the newest Clairex Corp. CL-505L Cadmium Sulfide Light Cell to
measure light levels from twilight to bright sunlight at ASA speeds of 3 to 25,000 . A new $5_{6 " \prime}^{\prime \prime}$ high eased type probe is now available as an accessory. The Computer gives \mathbf{F} stops from .7 to 90 ; lists exposure time from $1 / 15,000 \mathrm{sec}$. to 8 hours; 4 range selection; EV-EVS-LV settings; weighs only 10 ounces.
And yet-this all-inclusive kit can be assembled with a soldering iron and screw driver in less than 2 hours. Step-by-step instructions make it easy. If you prefer, order your S \& M Supersensitive Photo Meter fully assembled and factory tested. Complete with attractive carrying case and computer.

\$29.95	\$34.95	\$2.00	${ }_{\text {Alditional }}^{\text {Computer }}$ \$1.00
	No. 102 -fully assembied with carrying case	$\begin{gathered} \text { Nor } \\ \text { cars } \\ \text { case } \\ \text { ond } \end{gathered}$	

SCIENCE \& MECHANICS-KIT DIVISION/505 Park Avenue/New York, N. Y, 10022 RTV.798 Enclosed is 6. Please send me the new S\&M Supersensitive Photo Meter. I understand that if I am not completely satisfied, I may return the meter within 10 days for a complete refund.

When you stop to think about it, a VTVM is a pretty reliable instrument. In fact, about the only periodic maintenance required is replacement of the ohmmeter dry cell or cells. This operation, though simple, is troublesome. And, when the need arises, it must be handled immediately to prevent damage to the VTVM due to electrolyte leakage. The dry-cell eliminator described here will put an end to this annoying task.

A common dry cell, the kind usually found in a VTVM, is a low-impedance power source; that is, it provides a constant voltage under varying load conditions. Any device used to replace a dry cell must have the same output characteristics. This, then, is the first requirement for our dry-cell eliminator. Other requirements include simplicity and compactness.

What Is It? The battery eliminator is a transistorized voltage regulator powered by a

BY CONALD E. 日CWEN

You say your VTVM's ohmmeter won't read full scale? You're worn out replacing weak dry cells? Do you worry about cells leaking electrolyte? Get rid of your biggest VTVM problem-simply build a dry-cell eliminator!

DRY CELL

low-voltage winding on the VTVM power transformer. When properly constructed, it occupies no more space than the dry cell it replaces. It requires additional power only during the time required to take a resistance reading. Although the unit described here replaces the 1.5 -volt cell used in most VTVM's, the principle of operation can be applied to meters requiring higher voltages.

How It Works. The added winding on the power transformer (Fig. 1.) supplies approximately 3 volts for the circuit. Diode D1 rectifies the supply voltage. The resulting DC voltage, filtered by Cl , supplies the collector of Q1, as well as the reference circuit (R1, D2, D3, D4). R1 limits the current through D2, D3 and D4 to approximately 30 milliamperes. D2 and D3 are forward-biased silicon diodes. The nominal forward voltage drop across silicon diodes is 0.7 volt per diode, and is relatively constant over a wide current range. Thus, the drop across two diodes in series is approximately 1.4 volts, which is the nominal output of a dry cell.
Diode D4 is a germanium diode with a drop of about 0.2 volt. This compensates for the base-to-emitter drop in Q1. The constant 1.6 volts across the diodes is the base voltage for Q1, an emitter follower. Although the voltage gain of Q1 is approximately unity, there is a nominal base-to-emitter drop of approximately 0.2 volt; thus the output voltage across R2 (and across an external load) is approximately 1.4 volts. Within the limitations of rectifier and filter circuit, the output is relatively constant with a varying load.

Transformer Winding. Power for the dry-cell eliminator is supplied by a winding added to the VTVM power transformer. The nominal DC voltage required is 1.4 volts. Allowing for a drop of 0.2 volt across transistor Q1 (this is the base-to-emitter drop for a germanium transistor), and an additional 0.7 -volt drop across rectifier D1 (this is the drop across a silicon diode), the transformer must supply not less than 2.3 -volts rms. But this value does not allow for line-voltage variations from the design center. Considering a $\pm 10 \%$ line-voltage variation, the minimum requirement becomes $2.4+0.24$, or 2.64 volts. In practice, the new winding on the transformer should supply more than 3 volts rms-as measured with an AC volt-

Fig. 1. Hardest part of this circuit is adding winding to existing transformer.
meter. This permits an adequate drop across Q1 for better regulation.

Determine the exact number of turns experimentally as follows. Wind a full layer of \#22 or \#24 awg enamelled wire on the power transformer. Be sure to count the number of turns.

In most cases, there is plenty of room between the winding and the core of service type instruments. (Some laboratory-type and military-surplus instruments have hermetically sealed transformers. In this case, a separate transformer, perhaps a small output transformer, to change 117 volts to 3 volts, must be added.) Generally, the power transformer is accessible and does not have to be removed to add the extra winding.

After the one-layer winding is in place, apply power to the instrument. Measure the voltage with the winding loaded by a 15 -ohm, 2-watt resistor. The voltage will probably be more than 3 -volts AC. Using the ratio

$$
\frac{E_{1}}{N_{1}}=\frac{E_{z}}{N_{z}}
$$

determine the number of turns required for 3 volts and remove the extra turns from the transformer. For example, suppose that you added 50 turns (N_{t}), and this provided exactly 5 volts $\left(E_{t}\right)$. Substituting in the formula, the required number of turns (N_{z}) is 30 . Thus, 20 turns must be removed, leaving the required 30 turns. After the turns have been removed, check the voltage again with the 15 -ohm load. Take off (or add) turns as required to get 3 volts. When you trim off the excess wire leave at least six inches of lead wire on the transformer. Put sleeving over the leads and secure the winding with tape.

Fig. 3. Basic VTVM ohmmeter circuif.

Fig. 2. You can use any transistor that can safely handle the $500-\mathrm{ma}$ maximum current. A $1 / 2$-amp meter-type fuse connected between DI and the collector of Q1 will protect D2, D3, D4, Q2 from shorts.

Rectifier and Regulator Circuits. Build this assembly on a small phenolic board, approximately 1 inch by 3 inches, and at least $1 / 16$-inch thick. The exact size and shape depends on where it will be mounted. Study the schematic (Fig. 1) and pictorial wiring diagram (Fig. 2) for details. It's a good idea to breadboard the unit before putting it in final form. This way, you can determine if the circuit is just right for your meter. The limiting factor is the center-scale reading of the low-ohms, $o=R \times 1$ range on your ohmmeter. Fig. 3 shows a typical ohmmeter circuit. Maximum current flow occurs when the meter is on the $\mathrm{R} \times 1$ range and the probes are shorted to adjust for zero. In the example shown, maximum current is:

$$
\begin{gathered}
I=\frac{E}{R} \\
I=\frac{14 \text { volts }}{10 \text { ohms }}=140 \mathrm{ma} .
\end{gathered}
$$

The author's meter has a center-scale reading of 30 chms. The circuit shown in Fig. 1 is satisfactory for this. However, on

PARTS LIST

Cl - 500 -mf., δ-volt tubular electrolytic capacitor
D1-500-ma., 50 -prv (piv) minumum rating sificon diode (1N2069, IN2609, IN4001 or equiv.)
D2, D3-30-ma., 25 -pry minimum rating silicon diode (IN198A, IN294, IN34 or equiv.)
Q1-Power transistor, pnp (SK3009, 2N2061, 2N255 or equiv.l
R1-47-ohm, $1 / 2$-watt resistor
R2- 150 -ohm, $1 / 2$-watt resistor
Estimated construction cost: \$3.00
Estimaled construction time: 2 hours
the $R \times 1$ range the power supply ripple at point B (see Fig. 1) increases-resulting in a decrease in the average DC level at point C. If the center-scale reading of your ohmmeter on the $\mathrm{R} \times 1$ range is much below 30 ohms, increase the value of C 1 to $1000-\mathrm{mf}$ (Blue Beaver BR 1000-25). In extreme cases, replace D1 with a full-wave bridge, as shown in Fig. 4. Changing the rectifier from halfwave to full-wave doubles the ripple frequency and improves the performance of the power supply under heavy load.

Increasing the number of turns on the transformer will also help, although this might require a higher value for R 1 . One

Fig. 4. Bridge rectifier circuit doubles ripple frequency and improves filtering.

DRY CELL

disadvantage of increasing the supply voltage is the additional drain on the primary of the VTVM power transformer. Usually these transformers are sized close to the requirements of the unit without the added winding. If the added circuitry requires too much power, it might upset other circuits. Since current drain (determined by the $\mathrm{R} \times 1$ ohmmeter circuit) is 100 ma (or more), voltage from the added winding should be maintained at as low a level as possible to keep the power in the primary to a minimum.

In constructing the final assembly, take into account the space available. If possible, build the unit to fit where the cell was mounted. The dry-cell eliminator shown in the photographs replaces a penlite (size Z or AA) cell; consequently, we removed the battery clip and soldered the unit in place at that point. If the VTVM is crowded, you might have to find some other place to mount the device.

Checkout. Typical voltage readings are indicated in Fig. 1. Although readings at points A and B may vary, the other voltages should be within the limits shown. This assumes, of course, that the ohmmeter requires a single 1.4 -volt dry cell. For higher voltages, readings should increase accordingly. In

Fig. 5. This simpler circuit doesn't use a series regulator to load-here load is in parallel to the shunt regulator diodes.
most cases, the ohmmeter zero reading will have to be readjusted for the low range, but this is often true for even a size-D cell. Most service-type ohmmeters use a size-C cell; and, when properly constructed, the battery elinıinator will perform comparably.

Other Possibilities. One of the advantages of this circuit is that it requires only a few milliamperes during standby. A disadvantage is that it is more complex than other workable schemes. The circuit in Fig. 5 is an example. Performance compares favorably with the transistorized circuit previously described except that it draws maximum current (approximately 300 ma) whenever power is applied to the VTVM. Using the ohmmeter does not change the current required. Total current required by the ohmmeter and regulator circuit combined is 300 ma .
(Continued on page 112)

Dry-cell eliminator is about same length as two power transistors. Its thickness is about that of penlight cell and can be fitted into most metal-cased VTVMs.

One more modification to this reworked VTVM is the drycell eliminator. Leads from TI^{1} are routed away from vacuum-tube circuit wiring.

Space-Age Xtal Set

Position a few push-in terminals; wire in a few basic electronic components and solder on a lew interconnecting wires-then sit down and listen to music.

- More than 60 years ago man listened to radio signals on a crystal set-a coil, tuning capacitor, headphones, and the cat's whisker crystal detector. Today, jets zoom overhead, a burst of light welds a detached retina (in the human eye), and computers do complex problems in a fraction of a second-yet we're still peddling 60 -year-old crystal sets

The small-fry can tune this set as easily as any of the larger ones. The silence for the rest of the family is really welcome.
to the kids. Sure, instead of diddling with the cat's whisker to find the most sensitive spot on a crystal we substitute something like the 1N34 diode. hut it still takes an umpty-ump-foot-long antenna and-as they say-a solid ground just to pick up the 50 KW . station on the other side of town.

Man, this is the space age-let's do it right. Pull out that crystal, throw in a transistor (a triode crystal) and with no other components other than a penlight cell you can pull in that fifty kilowatter with 2 feet of wire for an antenna. If you want to splurge and use a long-wire antenna and a ground you'll get enough signal to overload the headphones.

The Space-Age Xtal set is shown in the schematic. Note that transistor Q1 aloneno extra resistors and capacitors are needed -replaces our old friend the diode. Where's the detection? Simple. Q1's base-emitter junction is a diode, providing the detection or rectification. The signal variations (audio) between the base and emitter then become the input signal to the "entire" transistor which is also an audio amplifier. That's all! The single transistor provides detection and amplification. A power switch? None needed; when the headphones are disconnected the battery circuit is opened.

Something for the kids! Again, instead of going back 60 years and squashing some components into a hunk of wood-generally euphemistically called a breadboard-let's stick to the space age and use perf-board wiring. In fact, you can throw the perf-board into the box of parts and get the kids off your back for at least an hour. Figure another couple of hours of freedom as they listen to rock-and-roll on a radio they built.

The entire radio is built on a standard $31 / 2 \times 41 / 2$-inch perf-board (actually per-forated-phenolic board but it is also called a terminal board). As supplied by General Electric for a paltry buck, the board comes complete with a dozen push-in terminals (sometimes called flea clips although really quite different) and four rubber feet, one for each corner. The rubber feet prevent the terminals, which protrude through the board, from scratching your Louis XXV dining room table. Another advantage in using the G.E.'s ETR-4288 Terminal Board is that the terminal holes are just the right size for tapping in \#4 machine screws or those extra self-tapping screws left over from aluminum chassis cabinets.

First step is to mount the rubber feet at each corner with supplied self-tapping screws. Then mount coil L1.

L1 has what appears to be a loosely wound

Parts layout is not critical. Just keep lead lengths (wires) between Cl , LI and Q1 reasonably short. RF-bypass or filter (C2) controls average voltage from detector-too high a capacitance will affect treble tones of music -effect will be noticeable with hi-fi phones.

Transformer can be used to match lowimpedance headphones to Space-Age Xtal Set output-try an output transformer from tubetype radio. Strong signals will give low volume on speaker for quiet-room listening.

PARTS LIST

81—1 $1 / 2$-volt penlight cell
Cl- $385-\mathrm{mmf}$., miniature funing capacitor Hafayette 99R6217 or equiv.)
C2- 500 mmf to $0.001-\mathrm{mf}$., lany voltage rating-see text)
Q1-Transistor, pnp IGeneral Electric GE-1, 2N247, 2N409, 2N1284 or equiv.)
L1-Ferite antenna coil (Miller 6300 or equiv.)
1-1000-5000-ohm headphones (magnetic type)
Misc.-perforated-phenolic board; Fahnestock clips, wire, solder, rubber feet, brackets, mounting screws, etc.

Estimated construction cost: $\$ 4.00$ Estimated construction time: 1 hour

Even parts are not critical. Cl and LI can be salvaged from any broadcast-band receiver. Q1: any general purpose unit.
coil over the main coil. But it really isn't a coil; it happens to be a short antenna lead. Simply unwrap the loose winding and cut it off. The metal strip packaged with L1 is the mounting bracket. Drill a hole in the solid end for a \#4 or \#6 screw, fold it as shown in the photographs about one third up from the bottom (the end with your hole) and mount it to the board with a single screw.

Tuning capacitor C 1 is mounted on an L bracket fashioned from $1 / 2-\mathrm{in}$. wide scrap aluminum or a heavy tin can. Any reasonable size will do as the mounting isn't critical.

Push in three terminals, as shown, to provide transistor Q1's tie points. Don't bunch them up as there's plenty of roon on the board. Penlight cell B1 is held in place with a battery holder though you can be real cheap and just tie it to the board, soldering the connecting leads to each end of the battery.

Capacitor C2 controls the overall gainto a degree. Without it you'll get roaring headphone volume when connected to a long-wire antenna; with the capacitor and a long wire the signal is even louder and might actually overload the headphones. If you want enough gain for a very-short antenna, C2 must be used.
Fahnestock clips are used for the headphone and for Ll's antenna and ground connections.

Operation. It should work right off the bat. Simply connect a length of wire to L1's antenna connection, connect the phones and adjust Cl till you hear a station. If you live in God's country-a long, long way from the nearest broadcast station-you might have to connect L1's ground terminal to a groundlike a cold water pipe.

To calibrate the dial supplied with C 1 , simply adjust L1's slug either in or out.

Have fun building it, but don't expect 5 tube performance. Like all crystal radios the Space-Age model has broad tuning, and a strong station can easily take up half the dial.-Herb Friedman

SEND CARD FOR RCA'S NEW 1966 HOME STUDY CAREER BOOK TODAY

CUT THE TIME BETWEEN NOW AND SUCCESS

- Find out about RCA Institutes Career Programs.
- Learn about the amazing "Autotext" programmed instruction methodthe easier way to learn.
- Get the facts about the prime quality kits you get at no extra cost.
- Read about RCA Institutes' Liberal Tuition Plan-the most economical way for you to learn electronics now.
- Discover how RCA Institutes Home Training has helped its students enter profitable electronic careers.
Lots more helpful and interesting facts too! Send postage-paid card for your FREE copy now. No obligation. No salesman will call.

The Most Trusted Name in Electronics

David Sarnoff

Fhoto by Karsh, Ottawa
His rise from immigrant boy to industrial giant is an inspiring record. As head of RCA and pioneer in electronics and communications, he has probably affected our daily lives more than anyone since Edison.

In 1901, a tall, lean, long-faced man named Guglielmo Marconi, sent three faint sparks-the letter " S " in Morse Code-across the Atlantic Ocean, from St. John; Newfoundland, to England, and the new age of wireless was born.

Five years later, in the morning hours of September 30, 1906, a fifteen-year-old young mar with intent grey-green eyes, walked up to a busy traffic manager named George DeSousa, at the Marconi Wireless Telegraph Company of America, at 27 William Street, New York City, and asked for a job.

Operator. He could qualify as an operator, he said, for he had been working for the Commercial Cable Company as a messenger. He had saved his pennies, bought a telegraphy set, and taught himself Morse Code.

The busy traffic manager might have turned down any other applicant making such a cla m, but as George DeSousa told a friend later, he sensed something in the intent look of the young man before him.

No, he said, he had no job openings for operators, but if he wanted to work as an office boy he could start him at $\$ 5.50$ a week.

The Stert. That was the beginning. An office boy beginning that was to lead to expansive offices in one of the world's tallest skyscrapers, leading one of the world's

Becoming head of the family at age 10 , young David Sarnoff was delivering papers before daybreak and telegraph messages after school.

At 17 he earned the munificent salary of $\$ 60$ a month-working long hours at the Marconi station at Siasconset, Mass.

As an office boy, in 1907. the $\$ 5.50$ a week salary was welcomed.

most influential companies, to commendations from United States presidents, and other world leaders. But all David Sarnoff knew at the time was he could not be close to the new "wireless," and that he had some responsibilities.

Six years before, his mother had brought her family from Uzlian, Russia, to join her husband, and a few months later the father died from overwork, the result of his efforts to bring his family to the new country.

Nine Years O!d. Not quite ten years old. David Sarnoff became head of his family. Up before daybreak, he ran a newspaper route. After school, he worked as a messenger. But telegraph cables did not quite fire his active imagination. He wanted to know more about the new-fangled business people called "wireless."

It wasn't long before he was to know his first true thrill in his new occupation for one day walking up Broadway he found himself carrying the briefcase of the tall inventor who had first sent the strange sparks across the ocean, a man who was to become his close friend and confidante in later years-Marchese Guglielmo Marconi.

Shipping out while still in his teens, David Sarnoff, found more time to study and more money in his pay envelope for "pounding brass" on S.S. Beothic (above) during Arctic sealing expedition in 1911.

From this "desk" atop the Wanamaker Department Store, in New York City, David Sarnoff worked S.S. Titanic sinking distress messages for 72 hours.

Operator. When he was seventeen he won the chance he sought, as operator at a Marconi station at Siasconset, Mass., at the massive salary of $\$ 60$ a month. And at this station, he met some of the top wireless operators of the time, the men who worked the transallantic liners. Within two-three years time, Sarnoff himself was working ships running between New York and Boston, New York and New Orleans, sometimes to the Arctic Icefields.

Learning fast, but not fast enough to suit his eager mind, he applied for a post at Seagate, New York, where he could enroll evenings at Pratt Institute, study electrical engineering, and it was this study that won him his next notch up, as operator at the Marconi station atop Wanamakers Department Store in New York City.

Distress. It was April 14, 1912, and Sarnoff was on duty. The first distress signals sparked over the wireless. The liner S. S. Titanic, moving across the Atlantic, had struck an iceberg, and was sinking. A nearby ship, the Carpathia, was picking up survivors from the icy waters. Its urgent operator tapped out on his ship wireless the names of survivors as they came aboard.
(Continued overleaf)

1921 demonstration of RCA transoceanic station, at New Brunswick, N.J., brought together David Sarnoff (front row, second from left), Steinmetz, Einstcin and Langmuir.

A maestro of the business world, David Sarnoff, and a music Maestro, Arturo Toscanini, get together.

A far cry from the crude spark transmitters of earlier years, the inventor, Gugliemo Marconi, is conducted on 1933 tour of Long lsland station by David Sarnoff.

President William Taft, alerted, shut off all stations on the Eastern seaboard to clear the lanes for the young Marconi operator known for his "bull fist." For 72 hours without relief, Sarnoff reported to an anxious world the names of the people boarding the Carpathia, a feat that won acclaim for both Sarnoff and wireless. For people recognized for the first time that this tinker-toy wireless might prove a real value at that.

Moving Up. The Titanic achievement led to fresh promotions. From Chief Inspector to Assistant Chief Engineer, to Assistant Traffic Manager in 1915. To suggest improvements in the new growing business, Sarnoff would write letters to his superiors, spend his off-hours studying the work of the men in the "laboratories" of the time. One day in ' 16 he sent a note to his superior, General Manager Edward J. Nally, that proved historic:
"I have in mind a plan of development which would make radio a household utility' in the same sense as a piano or phonograph. The idea is to bring music into the home by wireless."

Then Vice-President, Lyndon B. Johnson and Senator Jacob Javits with David Sarnoff in Washington-1961.

During active service in World War II, Reserve Colonel David Sarnoff was promoted to rank of Brigadier Gencral.

The young traffic manager thought radio could broadcast not only music but lectures, and "events of national importance" as they happened. A year later, he moved up to become Commercial Manager of Marconi.

War. During the last years of the First World War, President Wilson decided to wireless his "Fourteen Points" for peace to the German people, appealing for peace and repudiation of their autocratic leaders. Adding the Alexanderson alternator for power, from a wircless station in New Brunswick, New Jersey, the President's points were transmitted overseas and ten months later, by the same means, Wilson sent his terms for armistice.

The powerful impact of these messages in bringing about collapse of the German regime impressed Wilson so much that, on his way to Europe to seek treaty terms, he began to comprehend the influence this new medium might wield in the future. The recent war had proved cables could be cut. Whichever nation led in the new communication could hold decisive advantage in time of crisis in the future.

RCA Now. Formation of the Radio Corporation of America, at the request of the United States Government followed; a new company absorbing American

General David Sarnoff is just another one of the "boys" as he receives honorary diploma from New York's Stuyvesant High School in 1958.

The original RCA Building (above), at Broad and Beaver Streets, New York City, has long been replaced by a skyscraper (left) in famed Radio City. General Sarnoff's desk is now in a grand office on 53 rd foor of corporate headquarters of RCA.

Marconi Company patents and personnel. And David Sarnoff, General Manager of Marconi, became the new General Manager of RCA.

Within three years he was appointed Vice-President, and the same year he foresaw the birth of another new branch of electronics, one that would add "sight to sound." But it wasn't until April 30, 1939 he stood before a World's Fair audience to announce:
"Now we add sight to sound. It is a feeling of humbleness I come to this moment, announcing the birth of a new art so important . . . it is bound to affect all society . . an art which shines like a torch in the troubled world . . . a creative force which we must leain to utilize for the benefit of all mankind."

Trees. What he didn't tell his audience that day was that the "new art" might not have been any "torch" at all if it hadn't been for David Sarnoff. For several years before, Dr. Vladimir Zworykin had asked for a brief audience with the man he had heard of and thought would listen.
(Continued on page 87)

RADIO-TV
 LAB CHECK

ACOUSTECH ADD-A-KIT
 Solid-State Power Amplifier XI and Preamplifier Module P/M

How good is great. If we're talking about amplifiers, good and great often depends on the individual tester's measurements, the interpretation of the measurements, and his evaluation of dcllar value. But if we're talking solely of the reproduction of virtually undistorted and uncolored sound the term great fits within narrow limits-the space between the input and output jacks of the Acoustech XI amplifier.

The Acoustech amplifier, available only in kit form, is actually two separate kits on the same chassis. The basic kit is the XI power amplifier-strictly a solid-state stereo power amplifier with no controls, it must be connected to the user's control center (preamp). With the addition of the Acoustech P / M kit, the amplifier is converted to com-

plete integrated amplifier. Whether you start with just the power amplifier or go immediately for both kits for a complete integrated amplifier depends on your own budget.

How the Amp Checked. Fig. 1 shows the performance of the basic amplifier. While it is rated at 35 -watts continuous sine-wave power per channel, the protective fusing creates a bit of a problem in testing. The fuses cannot take more than a few minutes of continuous steady tone before they blow. While there's no problem with music as even at a 35 -watt peak the music power constantly varies, we could not make continuous measurements at 35 watts. We therefore made the tests at 15 watts per channel with both channels driven and then spot checked

Fig. 1. You will have to squint to see the fraction of a db the constant-power curve drops at 20 Hz and at $20,000 \mathrm{~Hz}$-the drop is less than .2 db . Percent total harmonic distortion never exceeded .7 db (at 20 Hz) and averaged about. 25 db throughout the listening range. To make the tests valid, both channels were driven at full 15 watts ouf.

RADID-TV
 LABCHECK

various frequencies at 35 -watts output.
The curves shown in Fig. 1 are the constant power frequency response (top) and the related harmonic distortion (bottom). As you'll note, distortion is virtually nil. Spot checked at 30 watts, the frequency response fell off a little faster above 20,000 $\mathrm{Hz}(\mathrm{cps})$ while the distortion increased but 0.2%.

The amplifier is built like military equipment; components appear to be at least two grades higher than comparable consumer equipment. All components fit into a Ushaped frame with the sides of the U forming the front and rear panel. Though it is basically a power amplifier, the front and rear panels are pre-punched for the preamplifier/control center. The power amplifier's input stages are supplied pre-wired on a printed circuit board; after you've wired the power supply, output amplifiers and associated wiring, the input stages are simply plugged in.

Adding the Preamp. The preamp/control center is added to the basic power amplifier. Actually, you remove the amplifiers "solid" panel and substitute a panel drilled for the controls. Then you mount two printed circuit board sockets and complete the power and signal wiring. The preamp stages are supplied pre-wired on printed circuit boards and as with the amplifier you simply plug them into a jack.

What you get. The completed unit, that is, the amplifier plus control center features two magnetic phono inputs, one low and one high level (switch selected), a tuner and an auxiliary input, a line level tape input and a line level tape output. There is no tape head input. A front panel jack is provided for headphones.

The amplifier is push-button controlled. One button turns the power on and off while a second mutes the speakers for headphone listening. A third push-button completely bypasses the tone controls so the amplifier works perfectly flat-no tone compensation. The fourth button connects the tape input.

A mode switch offers almost unlimited switched arrangements with the options of mono, stereo, stereo reverse, right channel only, or left channel only. A switched AC

ACOUSTECH XI PREAMP/AMP
CONSTANT PONER AT 15 WATTS INTO 8Ω LOAD. BOTH CHANNELS DRIVEN SIMULTANEOUSLY, TONE CONTROLS AT INDICATED FLAT

Fig. 2. With the preamp module added, the Acoustech XI becomes a first rate integrated amplifier. Curves prove that the unit can stand up against any other product on the market today. Bottom curve is for total harmonic distortion-IM distortion was buried in test-instrument noise level and cannot be measured because it is low.

receptacle is provided on the rear apron.
The volume control has a slip clutch; once each channel's gain is individually adjusted they track together. The tone controls are not "clutched" primarily because they are arranged somewhat unusual. Instead of the high and low tone controls being grouped together, the high and low tone controls for each channel are together, the right channel controls on the right side of the amplifier and the left channel controls on the left side.

The balance control is the "full gain control" type. At :he center position both channels are at fuil gain. Rotating the control to either side reduces only the gain of the amplifier associated with that side. The balance control does not increase the gain of one amplifier while decreasing the other. This arrangement allows the balance control to completely mute one amplifier while leaving the other unaffected.

Typical of transistor amplifiers the total available output power per channel depends on the speaker load. Maximum power is delivered into an 8 -ohm load with slight re-
duction when using 4 and 16 -ohm loads. A switch cuts in a current limiting resistor which protects the output transistors against overload currents when the speaker load is less than 4 ohms (such as when using a multiple speaker system).

Preamp Specs. Fig. 2 shows the response (top) and distortion (bottom) at 15 watts for the completed preamp/amp. As with the amplifier test, the frequency response curve represents the input sensitivity for sustained 15 watts at all frequencies. Note that the distortion curve is at rated (15 watts) out-put-not normal listening level. As with the basic amplifier, spot checks at 35 watts output disclosed no appreciable change in performance.

Specifications for input sensitivity and tone control are shown in the table. Note that the tone control equalization is not "heavy" in the sense of fantastic high and low frequency boost. This amplifier will not compensate for serious frequency response difficiencies in inexpensive phono pickups and cheap speakers. However, the tone controls provide a sensitive shading to the overall tone.

Measurements for the Acoustech XI, un-fortunately-no matter how good they appear to be-really fail to describe how an amplifier sounds to the ear. The Acoustech XI offers truly magnificent sound; the bass comes out with a bone rattling thud with the mid-range and highs crystal clear.

We should also point out that the Acoustech XI has lots of "reserve" power. We pushed 50 -watts sine-waveform per channel with no evidence of saturation before the protective fuses blew out. The instantaneous or transient power would therefore exceed 50 watts.

Prices for the Acoustech XI, complete (Continued on page 114)

All About Whistlers!

It was close to the front. and World War I was in its climactic stages. What happened now could change the history of the world. Behind the German lines, a world famed physicist, Henrich Barkhausen, bent over to place a test prod in the ground.

A feu hundred yards away he placed another. These prods he knew would pick up minute electrical currents leaking from allied telephone wires. The signals would then travel by cable to an amplifier in safer territory where Barkhausen could put on his headphones and listen to telephone conversations going on behind Allied lines.

Foiled By A Whistle. It was a crude arrangement, even for the times, but the famed physicist had already gleaned more than one choice bit of information from his crude tapping. Only one thing was wrong. Too many times when he thought he was just about to tap an extremely vital bit of military knowledge, a curious thing happened. His reception was wiped out by a whistle!

Certainly Allied generals were not whistling over their military telephones! Yet what Barkhausen heard was definitely a whistle. A whistle so pronounced it jammed the conversations Barkhausen strained so hard to hear. Or could the strange sound be the result of flaws in the ap;aratus he had rigged? But when the tapping device had

All About Whistlers!

been checked, and he could find no cause for interference, he could only conclude the whistle he heard must have come from nature.

As he later summed up in a scientific paper: "During the war amplifiers were used on both sides of the front in order to listen in on enemy communications. At times a very remarkable whistling note is heard in the telephone. So far as it can be expressed in letters, the tone sounded like "peou." From the physical viewpoint, it was an oscillation of approximately constant anplitude, but of very rapidly changing frequency . . . beginning with the highest audible tones, passing through the entire scale and becoming inaudible with the lowest tones... The entire process lasted almost a full second."

Weird Whistles 'Round the World. Soon these weird whistling sounds were heard around the world, for as radio programming amplified after the war, radio listeners heard the whistle Barkhausen had heard more and more often. And when they complained that this woosh of a sound interfered with pet radio programs, radio engineers set out to track down the elusive villain.

It was a long wave they found-a wave below the lowest broadcasting frequencies; in fact, so low, it fell within sound range of the human ear. To hear it all you needed was an antenna to pick up atmospheric electric oscillation, and an audio amplifier like the one in a phonograph to convert this oscillation directly to sound.

And what did they hear then? At first only clicks, the same as in broadcast bands; but after the clicks, a musical sound, sometimes a twittering, almost like music. There was one set of sounds that seemed to follow storms. Engineers labelled these the "dawn chorus."

Where from the Whistler? These early engineers theorized the effect was caused by waves bouncing back and forth between the ionosphere and the earth, or bouncing back from various layers of the ionosphere, with frequencies spread out, the highest traveling fastest, the lower ones strung out behind so that the drawn-out signal caused a whistling tone of steadily falling pitch.

But while radio listeners were perturbed
a bit about a wave that seemed to freeload its way into their radio programs, Bell Laboratories had a real complaint. For in the 1920's, they found their submarine cables and long telephone lines were whistling. To further search out the mischievous wave, Bell Labs put two of their top engineers, E. T. Burton and E. M. Boardman, on the job, set up large loop antennas at Trinity, Newfoundland; Hearts Content, Newfoundland; Key West, Florida; Havana, Cuba, and at Frenchport, near Erris Head in the Irish Free States.

The Bell engineers soon found a curious clue. There was more than one whistle. And they named the new "whistlers" for the sounds they made: the whistler, the tweek, the swish and the rumbler.

The whistler they said was a whistling sound that starts at a higher frequency, speeds downward in a frequency at more or less constant rate, and then tends to rise again. A wave "known to hesitate and warble slightly before disappearing." The whistler, the Bell men said, did not seem to be affected by time of day or local weather conditions or the time of year. During some periods it could be heard frequently day and night for as long as 48 hours, and sometimes longer.

Swishes. On the other hand swishes were "hissing sounds with a broad tone quality, but no distinct pitch." The Bell men called them "musical sounds, such as sounds made by thin whips when lashed through the air." These sounds, they said, follow the same downward frequency sweep as the whistler and could be related to the whistler or could be a whistler that has been subjected to strong reverberation. For a number of swishes have been known to follow in a series, with almost perfect spacing, a train lasting as long as a few seconds.

Tweeks. Tweeks, though, according to oscillograph recordings made at the Irish outpost, start above 2000 cps , reduce rapidly toward lower frequency and have never been heard during the day, only around sunrise and sunset. The Bell Labs men thought they cited a wave they called the "rumbler" too, but found little to report on this tone.

Bell Rings Out. In 1933, improved systems ruled out whistlers in any form in cables and Bell Labs ended its research, leaving the whims of the whistler to its original discoverer Barkhausen, and to T. L. Eckersley of the Marconi Wireless Telegraph Company in England.

Barkhausen thought there could be two possible explanations. One, an electromagnetic impulse originating at the earth's surface could reach a distant receiver first over the direct path and then from various reflections. Such a series of reflections, he said, would result in a wave train of rapidly diminishing frequency, depending upon the height of the reflector.

Or, Barkhausen said, ionic refraction in the ionosphere could result in breaking up an impulse into component frequencies and a delay in transmission of lower frequencies with respect to the higher. "It gives a rate of frequency progression which varies with distance."

The Click Caper. T. L. Eckersley of Marconi Wireless thought, "these tones have a very peculiar character. The pitch of the note invariably starts above audibility, of ten with a click, and then rapidly decreases finally ending up with a low note of more or less constant frequency which may be of order of 300 to 1000 cycles a second. Duration varies, he says: at times lasting a very small fraction of a second; at others, $1 / 5$ of a second.

He thought the sounds appeared seldom in the morning, increased during the day, and reached a maximum during the night. Ionic refraction could account for the phenomenon, he said, as whistlers often followed by a second or two a loud click. Or he thought the whistler could be an echo of a click returning from the ionosphere, but then he wondered, how could a click be converted into a whistler, and at the time, no one really understood what caused a click.

Lightning Watch. In the early 1950's the British Air Ministry Meteoreological offices set up four stations spaced through the United Kingdom to study thunderstorms, and inadvertently, clicks.

They soon decided that clicks were radiations from lightning strokes. From lightning within 600 miles of the stations they could hear the lcud whistlers, but from points beyond 1200 miles they could not hear them at all. They could detect no echo at all from a click that originated more than 1200 miles away. The key to the problem seemed to be in determining the path of the clicks.
L. R. O. Storey, then researching at the Cavendish Laboratory at the University of Cambridge, next tried to track the whistler's path. He said when lightning strikes, it sends out radio waves in all directions, some going upward to the ionosphere. When ra-
dio waves cross the boundary between ordinary air and the ionized regions they are bent, just as a ray of light is refracted when it passes from air to some other medium. Whatever the angle at which these radio waves strike the ionosphere, all must be bent toward the vertical. And the refractive or slowing effect of the ionosphere on the waves must be very pronounced, concentrating the rays coming in from all angles into a narrow vertical beam.

But as the ray rises into the ionosphere, it tends to follow the earth's magnetic field, as this way it travels fastest, and as it travels, the pulse of the click is drawn out into a whistle.

Globe Jumper. Storey felt it was this action that caused the whistler to follow a line of magnetic force, leaping sometimes from the earth's surface in England southward crossing the magnetic equator at a height of about 7,000 miles, and coming down to earth in the Southern Hemisphere. A whistler traveling this path could be reflected from the ground and return along the same line of force to the area in England from which it came.

When a whistler is heard without a click, he thought, the wave had come from the Southern Hemisphere, was not an echo but a single trip message from a southern lightning flash. And the sound of the click had been lost traveling through lower atmosphere.

Sometimes, he said, a single click could father a whole train of whistlers, each one weaker and longer drawn out than the one before. Storey thought these could be reverberations from a single echo, bouncing back and forth like tennis balls between the two hemispheres.

For the length of the whistler seemed to be proportioned to the number of trips it had taken. In one test, whistlers were recorded bouncing back and forth, at two ends of a line of magnetic force, one in the Aleutians, the other in New Zealand, and on each trip the whistler was drawn out further.

Harnessing the Whistle. While engineers found clues to the whistler's behavior, they could not find a use for the mischievous fellow until the space age suddenly turned him into a hero. For the whistler's long trips deep into the reaches of the ionosphere are now man's first natural space probe.

Dartmouth College engineers study him from stations on earth and in space. The
(Continued on page 108)

By C. M. Stanbury II

Propagation Forecast

This issue we have departed slightly from our previous approach. The predictions are still based on the best SWBC DX available with reasonable effort. However, because we have entered a new era in the sunspot cycle plus seasonal considerations (specifically the high noise level), we have excluded 60 and 90 meters.

On the other hand, many of the rarest catches can be found only on these static ridden lower frequencies. Thus for fanatic DX'ers (like your scribe) we have set up a second chart for 60 and 90 meters. Note that times on the main chart are for your location wherever it may be in North America (but Standard rather than the Daylight time variety). For example, if you listen

August/September 1966

from Denver, Colorado then you use MST. However, except where indicated otherwise, all times on that second chart are EST.

60 and 90 Meters For the Fanatic DX'er	
Station Area	EST
Latin America	1800-0600
Africa	$\begin{array}{r} 2100-0300 \\ * 1600-1800 \end{array}$
Pacific	0000-0600
Asia	$0600-0900$ $* * 0700-1000$
*North America Eas **North America	

[^1]

- Ever wonder which stage in your multistage hi-fi amplifier isn't working, or how much gain it has? Well, with this one unit troubleshooter you can solve these problems. Using the oscillator and voltmeter sections, the gain of amplifiers can be measured. Frequency response can be spot checked-the oscillator section has output at three frequencies; low (100 cps), medium (1 kc), and high (10 kc).

Voltmeter Cperation. The signal from the input jack $\mathbf{J l}$ is fed through C1 to the voltage attenuator S1, and is divided down by the resistors R 1 through R 8 to a value less than .1 volts. The .1 -volt grid signal is then amplified by the pentode section (V1A) of the $6 \mathrm{U} 8 . \mathrm{R} 5{ }^{\prime} \mathrm{C} 2$ provides the proper DC bias for the pentode section. Amplified, the signal is then fed through C4 to the triode grid of V1B. The low-impedance cathodefollower output then feeds the signal, through C5, to the bridge rectifier circuit of milliammeter M1. R10 is adjusted for meter-scale calibration.

The Oscillator. The 6BH6 (V2) is switched, by S2, to either a Colpitts or phaseshift oscillator circuit. The 100 -cycle and
the $1-\mathrm{kc}$ frequencies are provided by RC phase-shift oscillator circuits. The 100 cycle phase-shift network consists of R16, R17, R18, C9, C10, and C11. The $1-\mathrm{kc}$ network consists of R19, R20, R21, C12, C13 and C 14 . The 10 -kc frequency is generated by a Colpitts circuit (L1, C16, C17-coupled through R22, R23 and C15). The generator signal is fed through C6 and Attenuator R11 to the output jack (J2).

The Power Supply. Filament voltages and B-plus power are supplied by T1 and D5. The B-plus is filtered by R24, R25, and C18A-B-C.

Calibration. Plug the unit in, keeping the Attenuator (R11) at minimum, and allow the set to warm up for 5 to 10 minutes. Turn the voltmeter range switch (S1) to the 1 -volt position and set the oscillator frequency (with S2) at 1 kc . Feed the output of the oscillator section (J2) to the voltmeter section input (J 1) and connect a standard voltmeter of known accuracy in parallel. Adjust the oscillator output Attenuator (R11) so the standard voltmeter reads exactly 1 volt. Then adjust R10 (without changing the setting of Attenuator R11) so the voltmeter and

the standard voltmeter both read 1 volt.
For rough calibration, or a quick calibration check, you can connect the center contact of J1 to pin 5 of the 6U8A or pin 3 of the 6 BH 6 -the voltmeter should indicate about 6 volts (with the range switch set to the 10 -volt position).

How To Use It. The oscillator section will supply test signals of three frequencies- 100 $\mathrm{cps}, 1 \mathrm{kc}$ and 10 kc . It must be kept in mind that the voltage output varies with the frequency selected. But the output level can be adjusted by using the voltmeter section as an indicator and adjusting the Altenuator for an identical reading on the voltmeter scale.

Shielded cables must be used for all connections to the voltmeter and audio oscillator jacks to prevent AC power-line pickup (hum) from influencing the test results.

Gain Measurements. The voltmeter can be used to measure the gain of a stage or as a general purpose instrument for audio troubleshooting. An audio signal from the oscillator section is fed to the input of an amplifier and the voltmeter is used to measure the signal at the input and output of each stage of the amplifier. For rough checks and troubleshooting it is best to use the 1 kc signal from the oscillator. This frequency is high enough so that it won't be confused with any AC hum that may be in the circuit and not too high that it might not be reproduced properly in inexpensive amplifiers.

Signal Tracing. Headphones or a speaker can be connected to the meter circuit as shown in the diagram. High-impedance phones connected through a small (about .002 mif.) capacitor will not upset the meter readings while giving high level at or near full-scale readings. Higher-value capacitors will affect meter readings but give increased volume.

Connecting a speaker or low-impedance phones to the output will reduce the readings some 20% (that is a full-scale reading$.1,1,10$ or 100 -will be reduced to $.08, .8$, 8 or 80). Using a capacitor in series with the transformer primary will reduce the amount of change in the meter reading but the volume will be reduced considerably. The transformer can be hooked into the circuit through a jack mounted on the front panel.

Construction. Cut a 1-1/2-inch ventilation

Front panel can be less-crowded looking if you use the miniature jacks and knobs.

For all-day operation better drill more vent holes in the cover directly over V1 and V2.

TUBE-SOCKET VOLTAGES (all readings made with VTVM)

PIN	6BH6			6U8
	100 cps	1 kc	10 kc	
1	0	0	-1.5	+150
2	+1	+1	+1.5	0
3	0	0	0	+80
4	6.3 AC	6.3 AC	6.3 AC	6.3 AC
5	+80	+80	+45	
6	+55	+50	+45	$+75$
7	+3	+3	+4	+3.4
8	-	-	-	+5
9	-	-	-	+. 05

PARTS LIST FOR AUDIO "INVESTIGATOR"

C1, C7, C8—.1-mf., paper capacitor
C2-4-mf., 6 -volt, electrolytic capacitor C3, C5-4-mf., 150 -volt electrolytic capacitor C4- 25 -mf., 200 -volt paper disc capacitor C6, C16, C17-. $005-\mathrm{mf}$., ceramic disc capacitor C9-C14-500-mmf, ceramic disc capacitor C15-.001-mf., ceramic disc capacitor Cl 8A, B, C-20-20-20-mf., 150 -volt electrolytic capacitor
D1-D4-General purpose diodes (Lafayette 19R4901 or equiv.)
D5-750-ma., 400 -prv (piv) silicon diode Fl- $11 / 2$-A, 250 -volt fuse
11, 12-Single-button microphone connector (Amphenol 75-PCIM-Lafayette 32R1908 or equiv.l
11-100-millihenry, 100 -ma RF choke (J. W. Miller 960 or equiv.l
M1-0-1-ma panel meter (Lafayelte 99R5052 or equiv.l

R1-900,000-chm, ! \% , $1 / 2$-watt precision resistor (Newark 13F120 or equiv.)
R2— 90,000 -olim, $1 \%, 1 / 2$-watt precision resistor (Newark 13F1 20 or equiv.)
R3-9,000-ohm, 1%, $1 / 2$-watt precision resistor (Newark 13F120 or equiv.)
R4-1,000-ohm, $1 \%, 1 / 2$-watt precision resistor (Newark $13 F 120$ or equiv.)
R5-3,300-ohm, resistor
R6, R12, R19, R20, R21, R23-100,000-ohm resistor
R7-270,000-shm resistor
R8, R16, R17, R18-1,000,000-ohm resistor
R9——5,000-ohm resistor
R10-5,000-ohm potentiometer Iscrewdriver adjust
R11-10,000-ohm potentiometer (screwdriver adjust)
R13-10,000-ohm resisior
R14-220,000-ohm resistor
R15-1,000-ohm resistor
R22-62,000-ohm resistor
R24, R25-1, B00-ohm resistor
(all resistors $1 / 2$-walf, 10% unless otherwise specified)
S1-S.p.4-t. rotary switch.
S2-D.p.3-t. rotary switch.
S3—S.p.s.t. (part of R11)
T1——Power transformer, 125 -volt, $15-\mathrm{ma}$; 6.3-volt, 6-amps.

VI-6U8A
V2-6BH6
1 -Cowl-type Minibox, gray hammertone aluminum (Bud SC-2 132 or equiv.)
1 -Perforated-phenolic board (unclad) $3-21 / 32 \times 63 / 4$-inches (Lafoyette 19R3606)
1 -Perforated-phenolic board (unclad)
2-7/16 $\times 33 / 8$-inches
1-7-pin, top-mount printed-circuil fube socket (Lafayette 33R8712 or equiv.)
1-9-pin, top-mount printed-circuit tube socket (Lafayette 33R8713 or equiv.)
Misc.-Perforated aluminum grill; flea clips; grommets; tie strip; machine screws and nuts; brackets; AC linecord and plug; Fuse holder, etc.

Allol wivesileaion

hole at both ends of the back panel, centered, in $11 / 2^{\prime \prime}$ from each end. On the inside of these, install a 2 -inch square piece of perforated aluminum, allowing clearance for the cover. Mount the perforated-phenolic board on the bottom of the box, using spacers or extra nuts to prevent the flea clips from shorting to the case. Mount R10 in line with a hole towards the back left side of the case. Make sure, when mounting the power supply's filter capacitor and the fuse holder, that the top of the box does not short them out. Plastic electrical tape can be used to insulate the exposed terminals of the fuse holder. Coil L1 should be mounted with a nonferrous screw (brass or aluminum) on the aluminum ventilating squares. Components for the 100 -cycle and $1-\mathrm{kc}$ oscillators can be mounted on a small perforated board (approx. $11 / 4 \times 21 / 4$ inches). Place the parts for the 100 cycles on one side and those for the 1 kc on the other side. Take care in constructing this module so that shorts do not develop. The competed module is mounted on a small bracket behind S2-leave about $1 / 4$ inch between the terminals. Excess lead
(Continued on page 114)

Cowl-type cabinet is a very neat-looking enclosure for most bench-top instruments.

A single earphone, or a sel of high-impedance headphones, can be permanently connected to C5 through a small capacitance without upsetting the calibration of the meter.

With the cover off, most of the major components are easily located inside unit.

Batteries aren't everything! A good variable-DC supply can handle many shop problems for experimenter and technician.

One of the handiest gadgets around any electronics workbench is a variable-voltage power supply. You can test transistor radios, amplifiers, ham gear, experimental circuits and anything that needs $u p$ to 1 amp at $0-15$ volts. Even if the unit you are building will be operated from batteries, it will be easier to test it using a power supply. Besides, there is no need to keep a varicty of batteries around the workshop. With a test power supply, you can forget about batteries until the project is finished. It's not difficult to build this Test Bench Power Supply for your workshop.

The power stpply has an output variable from 0 to 15 volts at 1 ampere with less than 2% ripple at full load, and better than 3% regulation from no load to full load. An output meter and a range selector switch permit continuous monitoring of output voltage or current. The power supply requires about 35 watts at 115 volts AC.

Circuit Description. The circuit (Fig. 1) comprises a 24 -volt, unregulated DC source, a voltage-reference circuit, a two-stage cur-
rent amplifier, and a output metering circuit. Transformer T1 (115 to 24 volts), bridge rectifier D1, D2, D3 and D4, and filter capacitor C1 form the DC source.

The voltage-reference circuit contains Zener diode D5, current-limiting resistor R1, and voltage-adjust potentiometer R2. Transistors Q1 and Q2, and their associated circuit components, compose the current amplifier. Both Q1 and Q2 are connected as emitter followers.

The meter circuit is conventional-a 1milliampere meter and a switch for selecting the correct shunt or series resistor to measure output current or voltage. Switching is arranged so that the first position (fully coun-ter-clockwise) measures output voltage (0 to 16), the second position measures current in amperes ($\mathrm{O}-1.6 \mathrm{~A}$), and the remaining positions measure 160 and 16 milliamperes, respectively. These particular full-scale readings were used because the meter happened to be marked O-16.

How It Works. With switch S1 closed (Fig. 1), current flows in the primary of

Fig. 1. It's the metering circuitry that makes the schematic diagram look so complicated.

T , inducing 24 volts into the secondary winding. Bridge rectifier D1, D2, D3, and D4 changes the AC secondary voltage to pulsating DC. Capacitor C1 filters the DC output of the bridge rectifier. This DC voltage is the collector supply for Q1 and Q2. And for the voltage-reference circuit, Zener diode D5 is the reference diode. It maintains a constant 16 volts across potentiometer R2. Resistor R1 limits current through D5.

Voltage at the wiper of R2 can be varied from 0 to 16 volts. This is the input signal for Q1, an emitter follower. Since emitter follower Q1 has a voltage gain of approximately unity, the voltage across R3 (and, hence, at the base of Q2) is about the same as the base voltage. However, because Q1 provides power gain, Q2 base current is greater than Q1 base current. Transistor Q2 is also an emitter follower; therefore, the voltage across R4 is approximately the same as the output of Q1. But Q2 is a power transistor which will supply considerable current to an external load connected across R4. The voltage across R4, which is essentially the same value as that applied to the base of Q1, is the power supply output.

The metering circuit, connected between the base of Q2 and the output terminals, monitors output voltage or current, depending on the setting of S2. When S2 is in position 1 (fully counterclockwise), meter M1 is in series with R5 to measure the voltage between the output terminals. When $\mathbf{S} 2$ is in
position 2, the parallel combination of R6 and the meter is in series with the output to monitor current up to 1 ampere. Positions 3 and 4 of S2 connect R7 and R8, respectively, across the meter, to monitor currents of 160 milliamperes and 16 milliamperes.

Construction. The power supply fits inside a standard $11 \times 7 \times 2$-inch aluminum chassis. Instead of a single $1000-\mathrm{mf}$ capacitor, as shown in the schematic, a bank of five $150-\mathrm{mf}$ units, mounted on a phenolic board, provides 750 mf . This was merely a matter of using what was available in the parts bin. Using a single capacitor as indicated in Fig. 1 is certainly recommended. D1, D2, D3, D4 as well as R3 and R4 are also mounted on this board, as shown in the photograph. One other difference between the unit built by the author and the layout in Fig. 2 involves that part of the circuit comprising the Zener regulator and Q1. Using modular construction, these components were wired on a separate circuit board and encapsulated. However, such construction techniques are not necessary. Conventional layout and wiring can be followed in building the power supply. The pictorial diagram in Fig. 2 shows the wiring- C 1 is shown as a single capacitor rather than a bank of 150 mf units.

Remember that power transistors, such as Q2, require an adequate heat sink. Use the heat sink specified in the parts list, or its equivalent. Insulate the transistor from the heat sink, as shown in Fig. 3, with a mica

Fig. 2. Pictorial diagram clarifies some of metering wiring.

Fig. 3. Power-transistor mounting is much easier on pre-ditled heat sink-otherwise use insulating washer as a drill template.

Here the inside of DC supply is seen from bottom. There's no crowding of components. Make good solid connections for all wiring that carries current from Tl to the output.

washer. Use silicone grease (Dow-Corning DC-44 or equiv.) between transistors, washer, and heat sink, to provide maximum heat transfer. Because of the high current involved, AWG 16 or 18 wire was used for all connections. Stranded wire, with polyvinylchloride (PVC) or other suitable plastic insulation, is easiest to handle.

If you prefer "bargain" transistors and diodes, by all means use them. But be sure to observe the ratings of substitute components. Rectifier diodes must handle at least 1 -ampere average forward current with a peak inverse (reverse) voltage rating of not less than 80 volts. The Zener diode must be capable of at least 0.75 watt dissipation. Almost any small-signal transistor can be used for Q1; however, the collector-to-emitter rating should be at least 20 volts, and the transistor should be rated at 140 milli-

TABLE I. SHUNT-RESISTANCE WINDING DATA

$\begin{array}{\|c\|} \hline \text { Wire } \\ \text { Size } \\ \text { (A.W.G.) } \end{array}$	+Resistance Ohm/1000 ft .	+Cal- culated Length	+ Start	Resistance Required
18	6.374	$10^{\prime} 6^{\prime \prime}$	12'	$+0.0666 \mathrm{hm}^{*}$ (1.6 Amps full scale)
20	10.14	$6^{\prime} 7^{\prime \prime}$	8'	
22	16.12	$4^{\prime} 1^{\prime \prime}$	5'	
26	40.75	$16^{\prime} 5^{\prime \prime}$	20^{\prime}	$\begin{aligned} & 0.666 \mathrm{ohm} \mathrm{~m}^{2} \\ & \text { (160 ma, } \\ & \text { full scale) } \end{aligned}$
28	64.79	$10^{\prime} 4^{\prime \prime}$	12'	
30	103.0	$6^{\prime} 6^{\prime \prime}$	8'	

*For 100 -ohm, 0-1 milliampere meter only-see text

Regulator circuit is made into a module to provide better temperature stabilizationbut it's not a worry for most experimenters.
watts or more. Q2 is a 20 -watt transistor with collector-to-emitter rating of 40 volts.

Metering Resistance. Resistors R5, R6, R7, and R8 are the only components that require special attention. These are the series and shunt resistors for the metering circuit, and the correct values depend on the meter used. Calculate the correct values as shown in Fig. 4. For example, consider R5-the series resistor for the 16 -volt range. Most $0-1$ milliammeters have an internal resistance of 100 ohms so: $E=16$ volts; $I_{m}=0.001$ ampere (1 milliampere); $R_{s}=100$ ohms. Thus:

$$
\begin{gathered}
R=\frac{E-\left(I_{m} \times R_{3}\right)}{I_{m}} \\
R=\frac{16-(.00 I \times 100)}{.00 I}=15,900 \mathrm{ohms}
\end{gathered}
$$

If you have a resistance bridge in your workshop, you could easily find this value
$R=\frac{E-\left(I_{n c} R_{m}\right)}{I_{m}}$
Where:

$R=$ value of multiplier (R5)
$E=$ desired full-scale voltage reading
$I_{M}=$ current required for fullscale deflection (amps)
$R_{M}=$ internal resistance of meter
$R=\frac{I_{m} R_{m}}{\left(I-I_{m}\right)}$
Where:
$R=$ value of shunt (R6, R7 or R8)
$R_{M}=$ internal resistance of meter
$I_{s t}=$ current required for fullscale deflection (amps)
$I=$ full-scale current to be measuced (amps)

Fig. 4. Mathematics required for designing metering circuitry to work with an existing meter, or a bargain-priced one, is not difficult when you do it one step at a time.

Front panel is actually side of a 2 -inch deep metal chassis which is used as the cabinet.
among a handful of $15 \mathrm{~K}, 10 \%$ resistors. A better bet, though, would be to use a 15.8 K precision resistor for the multiplier. This is the nearest 1% value, and it will provide all the accuracy and stability required for your power supply.

Calculate the values for R6, R7, and R8. For R8, $I=0.016$ amperes (16 milliamperes), $I_{m}=0.0 \mathrm{C} 1$ ampere, and $R_{3}=100$ ohms, so that:

$$
\begin{gathered}
R=\frac{I_{m} \times R_{H}}{\left(I-I_{m}\right)} \\
R=\frac{.001 \times 100}{.016-.001}=6.66 \mathrm{ohms} .
\end{gathered}
$$

Quick arithmetic shows that R7 will be one-tenth the value of R8, or 0.666 ohms; and R6 will be one one-hundredth of R8, or 0.0666 ohms.

The Shunts. A 15 -ohm and a 12 -ohm resistor in parallel provide the correct value for R8. Use 5% resistors for this. But the remaining resistance values are less common. In fact, the odds are that the only way you can come up with these values is to make your own resistors.

One of the nost abundant commodities around the home workshop is copper wire. In addition to using wire for connections, most hobbyists, at one time or another, try their skill at wirding coils, and even transformers. This requires magnet wire (enamel insulation) in sizes smaller than the usual variety of hookup wire. The nominal resistance of the various sizes of solid copper wire can be found in Table 1, and the values are sufficiently accurate to provide a starting point for winding shunt resistances for the 160 milliampere and 1.6 ampere ranges.

Using the smallest-size wire available, as shown in the table, wind the shunt resistors on a dowel, spool, or almost anything handy, as long as it is a nonconductor. A short piece of broom handle is good-it is large enough to permit the use of a wood screw for mounting. Both shunts can be wound on the same dawel if desired. Since some trimming is required to calibrate the shunt,
leave one end of each shunt free so that wire can be removed.

A Quick Check. At this point, check the power supply because it must be used to adjust the shunts to calibrate the milliammeter ranges. First, temporarily connect a jumper between the + terminal of Cl and the + output terminal. (Although this jumper will be removed later, tack solder it in place.) Now, measure the output voltage with a multimeter (VOM). Rotating R2, you should be able to vary the output from about 1 volt to at least 15 volts, unloaded. (If the power supply does not operate properly, make voltage checks (see Fig. 1) to isolate the trouble.

Calibration. Set the voltage to the lowest output position. Next, connect a 5 -ohm, 10 watt resistor across the output. Adjust the output to 5 volts. With the power switch off, connect the multimeter (set to read 1 ampere- 100 ma) in series with the 5 -ohm resistor. Apply power and measure the current. It should be approximately 1 ampere. If the current is greater than this, reduce the setting of the Output Level control until the meter indicates 1 ampere.

Holes are drilled through the chassis for convection cooling of power transistor Q2. You can't have 100 much ventilation here.

Now, turn the power off and disconnect the jumper between the output terminal and C1. Without disturbing the test setup, solder the 1.6 ampere shunt between the power-supply meter and selector switch S 2 , as shown in the schematic. With S 2 in the 1.6 -ampere position, apply power again and compare the readings on the multimeter and the powersupply meter. The power-supply meter should read higher than the multimeter. If not, there is not enough wire on the shunt. (Although this is quite unlikely, it is possi-
ble. If this is the case, add a foot or so of wire to the shunt-unless, of course, you were lucky and both meters read the same.) Unwind wire from the shunt until both meters indicate the same value of current. Trim only a small length of wire at a time-one or two inches at the beginning, and less as the readings get closer. Be sure that the power switch is off when connecting or disconnecting the shunt.

After the 1.6 -ampere shunt has been calibrated, solder the 160 -milliampere shunt between the power supply meter and S 2 , as shown on the schematic. Load the power supply with a 150 -ohm, 2 -watt resistor-in series with the multimeter set to read 100 milliamperes. Apply power and adjust the power supply until the multimeter indicates 100 milliamperes. With S2 set to read 160 milliamperes, compare the power-supply meter with the multimeter. Again, the powersupply meter should read high. Trim wire from the shunt, removing an inch or two of wire at a time, until both meters indicate the same value.

After both shunts have been calibrated, carefully disconnect them and seal the wire to the bobbin with varnish, epoxy, or "Q" Dope. When the sealer is dry, replace the shunts and solder them in place, exactly as they were soldered during calibration procedure.
(Note: The author salvaged shunts from an old multimeter, and trimmed them to the correct values as outlined in this procedure. These shunts are more compact than the shunts just described. Since the wire used
in commercial shunts is a temperature compensated alloy, they are superior to copperwire shunts. The inaccuracies due to temperature effects on copper-wire shunts are negligible unless the power supply is to be used in extreme environments.)

Other Meters. The values for R5, R6, R7 and R8 are for a meter marked $0-16$; but the same procedure applies regardless of the scale markings. For any meter, calculate the resistance values from Fig. 4; determine the amount of wire from Table 1, and calibrate as described. A $0-20$ or $0-15$ scale would work just as well.

If you have to change the scale on the meter, it's easy-disassemble the meter and remove the scale. Blank out the original scale numbers (not the scale divisions) with Liquid Paper or Sno Pake (available from office supply stores), and letter in the correct numbers with a lettering pen or drafting pencil. Use a full-scale value that will coincide with the existing divisions. Spray the scale lightly with clear acrylic, and reassemble the meter. With a little care, you can make the meter face look almost like a commercial unit.

After the power supply is completely assembled, add knobs, decals, or other suitable markings to the front panel for a neat, attractive unit.

Careful construction of this handy power supply will complement the test equipment for the workshop. It is not a precision laboratory voltage source; it was not intended to be. But it is a simple, inexpensive item that will be as useful to the experimenter.

44-KWH Fuel Cell

This completely enclosed fuel cell was recently delivered to Sanders Associates to power a U.S. Navy buoy. High-energy dry chemical fuels provide 44 kilowatt hours of continuous, unattended power for periods of up to one year. Developed by General Electric's Direct Energy Conversion Operation, the cell's power density of 150 watt-hours per pound can be fitted to a variety of lowpower applications-higher power can be supplied for shorter periods of unattended operation.

Look for more and more uses of this cell; in marine and land applications, for unattended beacons and buoys, remote monitoring and control equipment in isolated or otherwise inaccessible areas.

~WIMLABCHECK

AMPEX MODEL 1100 SERIES
 4-Track Stereo Tape Recorder
 with Autamatic Tape Threading

- Now that the state of the design art has progressed to the point where they can build reasonable "hi-fi performance" into a recorder priced near $\$ 100$, tape machine manufacturers are turning more and more to upgrading their machines with automation, and switching formerly restricted to recording studios. A perfect example of this recent move to super-mechanization is the Ampex 1100 series of tape recorders.

The Ampex 1100 series consist of three machines. Mechanically the transports and basic electronics are identical: the difference is the 1150 is only a tape deck with preamplifiers, the 1160 adds power amplifiers and a "bass boost" circuit, and the 1165 is the 1160 with a walnut instead of a metal enclosure. Our tests concern the Ampex Model 1160.

Design Spers. Like any modern recorder the 1160 is fully transistorized with the usual frequency response at $71 / 2 \mathrm{ips}$ of 50 to 15 ,000 Hz (cps). At $33 / 4$ ips the response is

limited to 50 to 7500 Hz . The $17 / 8 \mathrm{ips}$ speed is good for speech only.

The 1160 has the usual VU meters (one for each stereo channel), microphone and line inputs, line output, and speaker output. The speaker output is a 6-watt (sine-waveform) amplifier, the user supplies external speakers as the 1160 does not contain its own speakers. A monitor switch connects the power amplifiers at a sharply reduced level for low level monitoring during recording.

Individual volume controls determine the gain for both the microphone and line inputs for the left and right channels. The variable tone control is marked for the proper equalization of the three tape speeds. The record selector is the pre-set level type. When set to record, the VU meters indicate the recorder's input signal before the tape is driven. Only after the record safety is depressed and the play button activated does the input signal get on the tape. (turn page)

The playback take-up reel is serrated. When the tape is placed in the slot (see top of next page) it falls across the serrations. As the reel rotates, it takes up the tapean automatic self threader.

Easy? Yes! But it's the automation that's really the "heart" of the Ampex 1160. While it records either 4 -track stereo or 4 -track mono there's never any reason for the user to touch the tape until it has been completely played. In normal operation the drive is reversible; when the tape is played out and only a few turns remain on the supply reel the user simply flips a switch on the transport and the drive reverses from right to left instead of the normal left to right. Simultaneously, a complete set of "reverse" heads is switched in; for example, if the 1-3 track heads are in use for stereo, reversing the tape switches in the heads for the 2-4 tracks. For 4-track mono, the drive reverse automatically changes two of the track heads, say 1 to 3 ; if at the end of the \#3 track the drive is again reversed and the manual mode switch set to the second mono position the recorder will play the \#2 and \#4 tracks.

For those too lazy to throw a single switch the Model 1100 series incorporates an electronic reversing circuit. Note that electronic means just that; it is not necessary to cement a piece of foil to the end of the tape. The mode switch has a small lever sticking out the side. When the lever is pulled down a 20 cycle pulse (from a built-in tone generator) is recorded on the tape. (The 20 Hz [cps] pulse is filtered from the output so it's not passed onto the speakers.) If the tone is recorded at the end of a track the entire tape drive and head selection reverses at the end of the tape. Naturally, the tone pulse can be placed at anytime, anywhere on the track. The tone control signal is recorded on tracks 1 and 4; when the tape is playing tracks 2 or 3 the recorder responds to the pulse on 1 or 4 .

If the tone control signal is added to a pre-recorded stereo tape the recorder will play the entire tape without interruption. For 4 -track mono tapes, the user need only change the track selector switch at the end of the second track; the rest of the tape plays automatically.

Eliminates Fumbles. Another bit of automation is the automatic take-up reel. Unlike the usual recorder whereby the user threads the tape onto the take-up reel, on the 1100 series the free tape end is dropped into a slot. A serrated hidden (covered) take-up reel grabs the tape and starts winding as soon as the drive switch is activated. For some reason Ampex suggests the automatic reel be replaced with a standard reel for recording. We can't figure out why as using the

To thread the 1100 , pass tape against heads and into slot. Motor starts; tape threads.

The 1100 has a double capstan drive_one for forward and one for reverse. Action is smooth.
automatic reel had no effect on frequency response or wow-and-flutter. To change reels, the user snaps off two plastic covers, removes the reel retaining screw and substitutes a spindle; the mechanism will then accept standard plastic take-up reels. Two rubber reel hold-downs are provided.

The Ampex is normally supplied with one microphone, a blank 7 inch reel, the changeover spindle and a case to hold the mike and spindle. Optional accessories include a dust cover, microphone, accessory kit which includes a splicer, head demagnetizer, head cleaner, leader tape, splicing tape and Q-tips, and 5 speaker systems.

For further information and specifications write to Ampex Corp., Dept. RTV, Consumer and Educational Products Division, 2201 Landmeier Rd., Elk Grove Village, Illinois.

KNIGHT-KIT Model KG-685

Color-Bar and Test Pattern Solid-State Generator

E The Knight-Kit KG-685 is a solid-state color bar and pattern generator that combines in a single cabinet all the test signals and conveniences needed for proper adjustment of color television receivers. To insure compatibility with all receivers the KG-685 provides for three different signal coupling methods. The primary output is a coaxial cable (terminated in alligator clips) which provides an RF test signal on channels 3, 4 or 5 . Best performance is obtained by utilizing an unused channel frequency and the user determines the exact output frequency via an adjustment on the unit's rear apron.

For receivers that require a video test signal the KG- 685 provides a composite video signal at a front panel jack. The composite test signal is variable from -2 to +2 volts peak-to-peak. For those sets which strip the sync signal off before the video detector, the KG-685 also provides a separate sync signal at a front panel jack.

Pop Parterns. Seven test patterns are provided: dot, cross hatch, vertical lines, horizontal lines, color bar, purity and gray scale. The purity pattern provides full screen red, green and blue when used with the gun interrupter switches (gun killers). The gray scale is used to check for optimum black-and-white adjustment of color receivers. Proper receiver adjustment is indicated when all six levels of brightness (gray scale) are reproduced in black-and-white with no trace of color tint.

Fourteen one-raster-line-thick horizontal lines and nine v sible vertical lines are provided. The intersection of the lines provides the dot pattern. Either the dot or crosshatch pattern is used for static convergence of the three color guns while the vertical and hori-

zontal bars are used for dynamic convergence. Naturally, either the vertical and horizontal bars or the crosshatch can be used for linearity adjustments on color or B\&W receivers.

Other Features. A sound carrier, which is crystal controlled exactly 4.5 mHz from the picture (video) carrier, is also provided. The sound carrier can be switched on or off, and though it is unmodulated it can be used for adjustment of the sound quadrature by adjusting the quadrature for minimum hum or buzz (absolute quiet).

The jacks for the gun killer cables and the gun killer switches are located, along with the color level control, on the front panel.

Two unusual conveniences are provided. The first is a built-in work light, actually a small pilot lamp and shield attached to a cable. The lamp is attached to a small rub-
(Continued on page 112)

Convenient feature of generator is a metal mirror that unfastens from bollom of cabinet. It permits the service technician to observe the TV screen while he makes adjustments at the rear of the receiver.

Voltage by the Numbers

by Robert Hertzberg

You've got to look your house current straight in the phase to find out why voltage soars to 234 or sags at 110 . It's what happens from pole outside to fuse panel inside.

- During the first half of the 20th Century it was pretty easy to identify the clectricity furnished to most resider:ces. If there were only two wires from the utility company's pole to the house, you could be sure that the juice was 110 volts, give or take a couple. If there were three wires, the voltage between the neutral ground wire and either of the other wires was s'll 110, and across the two outside wires it was exactly double, or 220 volts.

Nowadays, the situation can be confusingly different, particularly in new residential districts where central air-conditioning is as common as central heating. Instead of simple two-wire or three-wire service, you are quite likely to find four wires running into a house. Even three wires can be misleading, as you can tell from a quick check with a voltmeter. The reading between the neutral and either outside wire might be 120 volts, but across the two outside legs it is not 240 , as you might expect, but 208 ! Read that again . . 208. The same 120/208 combinations exist on the four-wire service; that is, 120 from the neutral to any of the three outside wires, and 208 between any pair of the latter. How come?

The answer lies in the nature of the electric energy produced at large generating stations.

You probably know in the general way that this is alternating current. It starts flowing in one direction from zero volts, builds up to a peak value, drops back (still in the same direction) and returns to zero; then it reverses direction and goes through the same process of rising and falling. Two such alternations constitute a complete cycle, and the number of cycles that occur in one second is called the frequency of the current. In the United States the standard frequency for homes and most industries is 60 cycles per second.

By international agreement among scientific bodies, the term $\operatorname{Hertz}\left(\mathrm{H}_{z}\right)$ is replacing cycle, to honor Heinrich Hertz, the German physicist who is credited with demonstrating the first transmission of radio impulses through space.

Watt's 3-Phase. Alternating current that goes through two simple alternations per second is called single-phase AC. This is what runs every low-power electrical device in the home, from clocks to washing machines.

However, commercial electricity is not produced in this form at all. Instead, it comes out of large generators as polyphase or more specifically as three-phase energy. Three-phase means just that. One alternation starts; a fraction of a moment tater a second

2300 -volt, 3 -phase power arrives on upper wires. Pole transformer drops it to $120 /$ 208 and feeds homes via lower four wires.

Take advantage of the new solid-state pickup that needs no preamp and offers low distortion. Here's how to build a simple $\$ 4$ power supply to match one to your amplifier.

Semicanductar Phono Cartridge Adapter

by Art Trauffer

The newly-developed Euphonics Miniconic semiconductor stereo phono cartridge is a remarkable device having a smooth distortionless resfonse from DC to over 30,000 cps . The extremely small mass of the silicon semicondector elements, and the stylus, result in fine transient response, and in a good arm the cartridge will track an unwarped record with as little as $1 / 2$-gram pressure, resulting in long life for records and stylus. The low impedance of this cartridge (around 1200 ohms) makes it fine for transistor circuitry, while the high output does away with the need for preamplifiers-as used with magnetic cartridges. Since this cartridge contains no coils or magnets, there is no AC hum to pick up by induction, and no magnetic attraction (or pull) to steel turntables. And all this for about $\$ 20$ (net) for the Euphonics U-15-P.

This cartridge functions as a variableresistance, and develops no voltage of its own-it requires a DC bias voltage-from 10 to 30 volts. (The cartridge elements are tiny bits of silicon-treated to act as variable resistances that increase or decrease in resistance when subjected to pressures or strains.)

This bias voltage could be taken from the DC supply for the transistor amplifier, used with this cartridge, but for experimenters here is a neat little DC supply which can be connected between the cartridge and the amplifier.

This power supply also inverts the phase of one channel of the cartridge output because the cartridge has an out-of-phase output, thus it isn't necessary to reverse the connections to one of the speakers (or to one of the earphones of a stereo headset) to get

in-phase stereo reproduction.
The schematic diagram in Fig. 1 shows the circuit for the power supply and phase inverter. Note that phono jack J2 must be insulated from the chassis. Two 9 -volt transistor batteries are connected in series.

The simple circuit in Fig. 2 can also be used, but this arrangement does not reverse the signal phase of one channel of the cartridge. You will have to reverse the connections to one speaker or one phone of your stereo headset. With this circuit all four of the phono jacks are connected directly to the metal chassis.

You can use a ready-made chassis box or make your own chassis. Start with a $51 / 4 \mathrm{x}$ 6 -inch piece of .037 (20 gauge) soft aluminum (like 52-ST). The cuts can be made with a hacksaw-use a fine-toothed blade. The bends can be made in a vise or with a
couple blocks of wood and a clamp or two. To make the corner bends drill an $1 / 8$-inch hole where the cuts meet-before you make the cuts, of course.

The photo shows the simple arrangement of parts and wiring for the circuit in Fig. 1. Before mounting phono jacks (J1, J3, J4) be sure to scrape off the anodized insulating coating on the surfaces of the aluminum where the jacks contact the metal. Note that the batteries are held in place with a twinclamp bent from a 1×4-inch strip of tinplate or aluminum. The clamp is secured to the chassis by one of the screws which hold the slide switch (S1). Connections are made to the batteries with snap-connectors.

This phono cartridge opens up a new field for hi-fi experimentation, and the power supply provides a handy, humless means of supplying necessary bias voltage.

MODULATION

BY EDWARD A. MORRIS W2VLU
Increase the output from your present microphone for more modulation and less hum pickup when using a long mike cable.

- If your DX contacts are few and far between, and the locals remark that your signal sounds weak-it could be your modulation.

If your first impulse is to rush out and buy a new rig, go ahead! But you can save yourself a pocketful of money-just up-grade your present rig, with this ultra simple microphone preamplifier.

Built from all new parts, the preamplifier should cost less than $\$ 4.00$! That's not much more than the cost of a new crystal! Easy to construct, a beginner could do the job, from start to finish, in less than two hours!

Depending upon the construction of the stand or case used, the preamplifier can be built right into the microphone it is to be used with. Highly economical to use, a single, inexpensive, alkaline cell will last well over a year in normal service.

How it works. Audio output from the microphone is fed into the primary of impedance matching transformer T1. The output from the secondary of the transformer drives the base of transistor Q1 through coupling capacitor C1. Resistance R1 and R2 form a voltage divider network which supply a base bias for Q1.

The electrical and thermal stabilization of the preamplifier is taken care of by resistor R3. Capacitor C2 bypasses this emitter dropping resistor to prevent signal generation.

The amplified audio output of transistor

Q1 appears across potentiometer R4-the collector load. The output of the preamplifier is extracted through coupling capacitor C3.

Operating power for the preamplifier is supplied by B1.

Construction. As can be seen in the photographs, the preamplifier is built on a small strip of perforated-phenolic board. Miniature eyelets and flea clips serve as parts anchors and terminal points. All parts, including resistors, were mounted up on end to conserve space. The electrolytic capacitors used are the replacement variety intended for transistor radios.

Since the components are mounted close together, the pigtail leads on the components themselves can serve as the major portion of wiring. Insulation should be slipped over those leads where there is a chance of an accidental short occurring.

Special care must be taken to insure that transistor Q1 is not damaged by excessive heat when it is soldered into the circuit. Use a suitable heat sink, a well-tinned soldering tool and complete the soldering operation as rapidly as possible.

Switch SI is a pair of unused normallyopen switching contacts on the microphone's push-to-talk switch. If your microphone won't permit such an arrangement, a miniature slide or toggle switch may be installed. Since the preamplifier has exceedingly low

MODULATION

current drain, (under one milliampere) switch S1 may be eliminated entirely. (The inexpensive alkaline cell, recommended in the parts list, will continuously power the preamplifier for a period of over three months!)

Using a somewhat different construction technique, and power source, the preamplifier can be constructed inside a conmon palm microphone, the type almost all CB rigs use. A single Eveready 625 mercury cell will power the unit for over 350 hoursthat's over one year, in normal use.

Although designed to work with highimpedance microphones, the unit can be modified to operate with low-impedance units. For low-impedance microphone elements, transformer T1 is removed, and the output of the microphone is then connected directly to capacitor Cl . Capacitor C 3 should be replaced with a $2-\mathrm{mf}, 12$-WVDC electrolytic unit.

After the preamplifier has been wired, it should be rechecked against the schematic diagram for possible errors. Pay special attention to the polarity of components, when indicated, and to the wiring of the

Booster, complete with dry cell, fits into base of this desk-stand microphone. Make sure you have room to accept dry cell and circuit board-just change layout to fit.
Pictorial layout (above left) shows positions of components on perforated board. A piece of self-adhesive foam weather strip is used to shock mount the Booster in base.
Wiring on underside of perforated board is with thin wire although a printed circuit could be designed. Plastic tubing is used to prevent shorts at crossover connections.
transistor. Reverse voltages can quickly ruin the miniature electrolytics or drain the dry cell. Take care with transistor and capacitor leads--too much bending or pulling can break leads at wrong point.

Adjustment and use. After the unit has been checked over for possible wiring errors, the preamplifier must be adjusted for proper operation with the transmitter it is to be used with.

With the transmitter in operation, adjust potentiometer R4, so that when speaking in a normal tone of voice, 100% modulation is

[^2]

All desk-stand microphones do not have as much space in the base as this Electro-Voice. A change in the perforatedboard layout may be necessary to fit components in space.
reached on intermittent voice peaks. Modulation percentage can be checked with the aid of a multipurpose CB transceiver tester, or, alternatively, with an oscilloscope. If a modulation meter is not available have a friend listen to your signal, and have him indicate to you when you have reached the optimum setting of the potentiometer.

Care must be taken to avoid setting the potentiometer too high, or overmodulation will occur. Modulation in excess of 100% will cause distortion to your signal, and interference to adjazent channels; this is in violation of the F.C.C. rules and regulations.

This is just about the most compact layout possible. Transformer T1 is the largest component perforated board. Resistors and capacitors could be wired flat instead.

Circuit of Booster is simple and should present few problems even as a first project. If there is too much gain in amplifier C2 can be removed.

PARTS LIST

B1-1.5-volt alkaline cell, (Eveready E91, or equiv.)
C 1-2-mf., 6-wvde, miniature electrolytic capacilor (Lafayette \# 99R6070, or equiv.)
C2- $10-\mathrm{mf}$., 6-wvdc, miniature electrolytic capacitor (Lafayette \# 99R6074, or equiv.)
3-.05-mf.s $75-\mathrm{wvdc}$, miniature ceramic capacitor (lafayette \# 99R6068, or equiv.)
Q1-Pnp transistor (2N217, SK3004, 2N316A, 2N4O4, 2 N 567 or equiv.)
R1—47,000-ohms
R2- 10,000 -ohms
R3-330-ohrrs

NOTE: All resistors are $1 / 2$ watt, 10% unless otherwise specified.
R4-1,000-ohm miniature potentiameter, (Lafayette \# 99R6142, or equiv.)
S1-S.p.s.t. switch, (see text)
T1-Miniature audio transformer. 100,000-ohm primary, 1,000-ohm center tapped secondary. center tap not used) (Lafayette \#99P6125. or equiv.)
Misc.-Wire, solder, perforated-phenolic board, eyelets, flea clips, battery holder, etc.

Estimated construction cost: \$4.00
Estimated construction time: 1 hour

- Like the barnstorming Jenny of 1920, another aircraft will visit tank towns and big cities across the country. Only now it won't be a crate held together by baling wire. This ship is a sleek twin-engine Martin 202 recently converted into a high-flying showroom by International Crystal Mfg. Company. The Oklahoma-based electronics firm will touch down in 27 cities to display its products to local hams, CBers, hobbyists and dealers.

As our photos show, passenger seating has been removed to make room for exhibits and a conference room. There are special generators to operate equipment on display and a stereo background music system to lull cus-

```
Baton Rouge, La.-
    June 13-14
Tuscaloosa, Ala.-June 14
Montgomery, Ala.-
    June 10-17
Chattanooga, 'Temn-
    June 18
Atlanta,Ga.-June 20-21
Jacksumille, Fla.-
    June 22-23
    Charleston. S.C.-June 24
    Greensboro, N.C.-June 25
    Baltimore, Md.-Junt 27-28
    Trenton, N.J.-June 29
    New York City area-
        June 30-July 1
    Burlington, Vt.-July 5
    Rochester, N.Y.-July 6-7
        Pittsburgh. Pa.-July 8-4
        Culumbus. Olio-July 11
        Amm A'bur. Mich.-July 12
        Chicago area-July 13-14
        Ruckford, Ill.-July 15
        Minnea,olis, Minn.-
        July 18-19
        Bismark, N.D.-July 20
        Billings, Mont.-July 21
        Seattle. Wasl_.-July 22-23
        Purtland, Ore-July 25-26
        San Francisco area-
            July 27-28
        Los Angeles area-Aug. 1-2
        Phoenix, Ariz.-Aug. }
        Salt Lake City, Utah-
        Aug. 4
```

Visitors enter the rear ramp of International's electronicscrammed airliner. Plane

lomers into a buying mood. The company's personnel will be on hand to answer questions about crystals, alignment oscillators, filters and other components made by the firm.

If you wish to attend the exhibit, check the schedule shown in the accompanying box. (Groups, clubs and conventions are offered special showings.) But before you head for the airport, double check on the plane's arrival; it may be delayed by weather.

Technical staff is on hand to provide you with on-the-spot information and answers.

Lined along either side of Martin airliner are electronic goodies for pro and amateur.

by Stanley Leinwoll

LATE IN 1959 an International Radio Conference was held in Geneva, Switzerland. The delegates to this Conference, representing close to one hundred different countries, drew up a complete set of Radio Regulations governing the entire field of wireless or radio communication.

One of the tasks performed by the delegates at the Conference was the assignment of specific bands of frequencies to be used in international kroadcasting.

In spite of the fact that the conferees agreed upon some twelve separate bands to be used in high-frequency broadcasting, as shown in Table I, a number of countries, many of whom signed the Geneva Radio Regulations, now operate outside these bands, in violation of the agreement they signed.

From the point of view of the short-wave listener, these Ott-of-Band-its offer the SWL who is interested in QSL cards an opportunity to take a fresh approach to his hobby by collecting illegal QSL's-that is, cards covering frequencies not allocated to broadcasting, but nevertheless used by international broadcasters. Most of the broadcast-
ers operating out of band will readily acknowledge a verifiable report.

Who They Are. As a start, the following is a brief summary of some of the broadcasters who make it a practice to operate out of band. Frequencies given are used throughout the year, but because of seasonal propagation changes their hours of use differ from month to month.

One of the most reliable of out-of-band International Broadcasters is the British Broadcasting Corporation. In general, the BBC has tried to use the same frequencies throughout the years, and although the British were signatories to the Radio Regulations, they have continued to use a number of out-of-band frequencies even though these have been allocated to other services.

9410 kHz is one of these frequencies. This frequency is in a band allocated to the fixed services; that is, a service between specific fixed points; such a circuit would be used by the army or navy, or by commercial communications companies.

9410 kHz is generally assigned by the UK (United Kingdom) to its Middle East/African service beginning about 1800 GMT
(1300 EST) and continuing to approximately 2400 GMT (1900 EST). The power of the transmitter is about 75 kw . and it is easily heard in the Eastern United States when propagation conditions are right.

A second reliable BBC broadcast channel operating in the fixed bands is 98251 kHz . It is generally on the air to the Middle East and East Africa between 1800 and 2200 GMT. It then moves to the Latin American service between 0000 and 0300 GMT, during which time it is easily heard in the U.S.

More on BBC. Two more very reliable BBC broadcast channels are 12095 kHz , and 15070 kHz ; the first is allocated to the fixed services, the latter operates in a region assigned to the aeronautical mobile service. Aeronautical frequencies are used for the transmission of information relating to air navigation, as well as the preparation for, and safety of, flight. Mobile frequencies are those used by craft in motion. Thus, the aeronautical mobile service may consist of air to ground, or air to air communication.

Operation of 12095 kHz is almost continuous throughout the day to one part of the world or another. Best reception time for this frequency is during the afternoon and early evening hours, local time.

15070 kHz can be heard throughout the daylight hours whenever propagation conditions are normal, or near normal.

The Ruskies, Too! Of all the out-of-band-its, Radio Moscow is perhaps the greatest offender. It can be found throughout the spectrum, from 5 to 20 mHz . Perhaps the strongest Radio Moscow signals over the years have come from their operation in, and adjacent to, the Amateur 40-meter band, between 7000 and 7300 kHz . This region of the radio spectrum is allocated exclusively to amateurs in North and South America. Yet, Radio Moscow uses 7150 and 7160 kHz to deliver strong signals to the Americas, which severely interferes with transmissions (Continued on page 114)

TABLE II. *OUT-OF-BAND BROADCASTERS

| Freq. (kHz) | Broadcaster Best Hours (GMT) |
| :---: | :--- | ---: |
| N.A. Reception | |

* Major Out-of-Band-its that can be heard in North America with an inexpensive short-wave receiver and long-wire antenna.

TABLE I. HF-BROADCAST ALLOCATIONS

Frequency Range (kHz)	Remarks
3200-3400	Allocated to broadcasting in the Tropical Zones, between the Tropic of Cancer and the Tropic of Capricorn. Also allocated to fixed and mobile services in other parts of the world.
3900-3950	Broadcasting in Asia and Australia only. Amateur use in the Americas.
3950-4000	Broadcasting, shared with fixed services, in Europe, Africa, and Asia. Amateur and fixed use in the Americas.
4750-5060	Allocated to broadcasting in Tropical Zones as indicated for $3200-3400 \mathrm{kHz}$.
$5950-6200$	Allocated exclusively to International Broadcasting throughout the world.
7100-7300	Allocated exclusively to Amateur Radio in the Americas, and to International Broadcasting in other areas of the world.
$\begin{gathered} 9500-9775 \\ 11700-11975 \\ 15100-15450 \\ 17700-17900 \\ 21450-21750 \\ 25600-26100 \end{gathered}$	Allocated exclusively to International Broadcasting throughout the world.

- In this era of Space-Age technology we have to have some electricity wherever we go -to power our radios, televisions and laborsaving devices, not to forget, of course, our lighting. For those items that aren't powered by their internal batteries we still need a connection to the power line. Heavy-current appliances and light fixtures are generally wired-in, directly-wall receptacles are used for portable appliances and table lamps. The best time to install the wiring for these units is before the construction work is finished.

The wall studs and door frames have been erected in your basement or home addition and now it is time to start your electrical wiring. A knowledge of the local electrical codes governing your installation and careful planning will insure a job that is neat, safe and legal. All wiring must at least conform to the National Electrical Code 1962, and any local ordinances, codes or standards. The code was originally drawn up at the turn of the century by insurance, electrical and architectural interests. Many editions and supplements have been issued down through the years to keep
pace with new appliances, techniques of installation and materials. The latest copy of the code may be obtained for $\$ 1$ from the National Fire Protection Association, 60 Batterymarch Street, Boston 10, Mass.

Many cities prohibit work by the homeowner entirely-other communities require a permit and a plan only, while there are no restrictions at all in a few places.

The procedure in New York City is that a licensed electrician must get a permit, do the work, and apply for an inspection by the Dept. of Water Supply, Gas and Electricity-who automatically sends a copy of the inspection report to the Board of Fire Under-writers.

Licensed electricians' rates are very expensive and many, many homeowners do their own work-following the Code. There are no problems with this type of installation until the insurance company refuses to pay off a claim from a fire, that they say, was caused by improper and illegal wiring that was not inspected.

In any case. you must start with a plan.

Soldered splices aren't used much any more. Circuit is completed by the connection between screw terminals.

Two or more boxes may be easily ganged to accommodate switches, outlets; loosen screw and remove side plate.

Plan not only for the present but for any possible future needs. It takes just as long to install wiring with \#12 (AWG) conductors with a 20 -ampere capacity as it does the slightly thinner \# 14 wire that will handle a maximum of 15 amperes safely. Don't put in a minimum number of outlets-thinking to save a few pennies here and there. An extra outlet never hurts and saves a great deal of wall chopping and patching at some later date. And make sure there is plenty of illumination. You can always turn off an extra

Stand on BX and pull faut across knee. Thumb guides hacksaw blade to start cut-don't cut your knee.

Remove kraft-paper wrap but not ground lead-bend back; wrap around cable; secure in clamp.

light but it is very difficult to add an extra overhead light after the ceiling is finished and all the tiles are in place.

Make a plan-use a scale of $1 / 2$ inch to equal 1 foot. Symbols, rather than an actual picture of an outlet or fixture, are conventionally used. These symbols are nationally understood by electricians. The lines representing the BX cable do not have to be drawn showing their actual route through the walls or floors. In actual practice the shortest route will save the cost of extra cable.

How you Add-A-Outlet depends on location of existing wiring and outlet boxes. The connections are simple. Running the cable through finished walls and ceilings can be a big problem.

Installing 3-way switch circuit adds real convenience to lighting rooms with two doorways or hallways from upstairs or down-saves many extra steps.

Job Sequence.

Mark position of outlet boxes, ceiling hangers, junction boxes, switches. Mount all boxes, hardware on their own or special brackets.
Install the cable from point to point.
Drill through studs, building members.
The standard technique of the building contractor is now to enclose the walls with paneling, plastering, etc., finish the floors and trim. For the do-it-yourselfer it might be advisable to skip the finishing step and do all the connecting of wires and outlets-temporarily hang ceiling fixtures and connect new circuit breakers or added fuses to activate the new wiring. This way you can test all your wiring and make any corrections before the walls go on.

Receptacles. Install at least one outlet for each 12-linear feet or major fraction of the perimeter side of the room. The outlets are generally placed one foot above the floor. Connect the wall receptacles to a different circuit (fuse or circuit breaker) than the overhead lights in the same room. Put the laundry equipment outlet on a separate circuit from the lights in the room.

Lighting. Furnish one circuit for the lighting fixtures of each 500 -square feet of floor area. There is no limit to the number of overhead lights you can put in an area as long as you don't overload the fuse or circuit

Machine screw tightens clamp to hold BX cable in Gem box-BX connectors are needed for square and round boxes that are used with BX or conduit (pipe) since these do not have built-in clamps of any sort.

breaker. Just don't put in too few-you can always turn out unwanted ones-and not have to wish you had put in more. Most electrical codes require at least two 20 -amp receptacle circuits each, for the laundry, kitchen, and dining-room area-and a separate lighting circuit. A separate 20 -ampere circuit is recommended for every 500 square feet of floor space or a 15 -amp circuit for every 375 square feet. Consider installing a separate connection for air conditioners, electric laundry dryers and electric heaters, rotisserie broilers or ironers-any appliance that draws more than $7 \frac{1}{2}$ to 10 amperes.

Take the output of an amplifier and connect it to its input and you have an oscillator-but there is more!

by Roy E. Nelson

- The study of oscillators considers one of the most capricious-natured electronic circuits known to engineers, technicians and experimenters. "An amplifier oscillates and an oscillator amplifies," has been credited to anonymity but truly relates the oddity of this most important element of all audio and RF circuitry as we know it today.

To approach the very fundamental condition of oscillation we consider Fig. 1 in which a capacitance and an inductance are combined and to which we add, initially, electric or magnetic energy.

Suppose that capacitor C has been charged by some means. The energy stored in the capacitor is then $1 / 2 C E^{z}$ where E is the maximum potential difference between the metallic plates of our capacitor. (E is in volts and the capacitance of C in farads.) When E is at its maximum value, the current in the circuit is zero. The presence of inductor L will allow the energy stored in the electric field of the capacitor to be transferred, and to form a magnetic field around the inductor.

As the capacitor discharges, E becomes zero and the current I becomes maximum. At the instant I is maximum, the energy in the magnetic field is $1 / 2 L I^{2}$-all energy is stored in the magnetic field and none in the electrical field. (L is in henrys and I in amperes.)

The process now reverses, the magnetic field collapses and the energy is transferred back to the electric field of the capacitor. This process would repeat itself indefinitely if there was no loss of energy in the circuit.

Oscillators:

Fig. 1. Inductor L and capacitor C diagram the basic LC-tuned network.

Fig. 2. The block diagram above shows one configuration of an oscillator. Feedback and frequency-control networks may be in either the input or output of the amplifier.
Since there is always some resistance associated with practical circuits and their elements, the amplitude of each successive oscillation will decrease until all of the stored energy is dissipated and the oscillations will cease.

While you have probably heard about transistor oscillators, vacuum-tube oscillators or tunnel-diode oscillators etc., these various classes (and they are as many as the active devices furnishing the gain necessary for the oscillation) tell us nothing about the nature of the oscillator.

The Basics. Fig. 1 illustrates the basic principles of oscillator function. At this point it will be helpful to examine some of the basic concepts of a sine-wave oscillator. Fig. 2 shows that an oscillator is composed of an amplifier (to provide power gain), a resonator or some device to fix the frequency of oscillation, and a feedback network to provide the reinforcing impulses (positive feedback) that create sustained oscillation. If this arrangement is to operate as a stable oscillator, the gain around the closed loop should be unity. If a gain greater than unity (one) exists, the output will decrease until the loop gain is reduced to unity, because of the limiting which occurs at high levels.

It can also be shown that the phase shift around the closed loop of Fig. 2 should be zero. Any phase shift, at the frequency of oscillation, will change the frequency a few cycles to a point where the phase shift is zero. These two conditions, of unity power gain and zero phase shift (around the loop) are known as Barkenhausen criteria for oscillations.

The circuit in Fig. 2 has a gain factor designated as G and the frequency-control element has a loss factor of P_{L}^{\prime} and the feedback network has a loss factor of $P^{\prime \prime}{ }_{L}$. When the gain G of the amplifier is greater than the combined loss of P_{L}^{\prime} and $P^{\prime \prime}{ }_{L}$, the P_{t} to the amplifier will cause it to oscillate and we will be able to utilize the output at P_{0} for whatever purpose our oscillator is intended.

Fig. 3. In vacuum-tube oscillator (above) feedback is through induction by cathode current through bottom turns of inductor L. Common-base transistor circuit (below) has separate windings for emitter, collector circuits wound on same transformer core.

Hartley triode. Fig. 3A illustrates a Hartley oscillator in which the amplifying device is a triode. The frequency-controlling combination is $L C$-the feedback section is a part of L but not a part of the frequency controlling network. Bias requirements for the triode are set by the capacitor and resistor network indicated.

With proper voltage supplied by the battery, a sinusoidal signal will be present at the output points-the frequency set by the LC combination. The frequency will be stable if the frequency determining elements are maintained at a steady temperature. If the whole unit is encased in a metal box (with the temperature of the metal box remaining constant) and the battery voltage or power supply voltage is maintained at some constant value, the oscillator will remain as stable as any crystal-controlled oscillator.

Solid-state electronics (transistor circuitry), in Fig. 3B use the same controlling elements as the triode oscillator. The frequencydetermining network is transformer winding L and capacitor C in the emitter circuit. They form the basic LC circuit of Fig. 1 and are the essentials of an oscillatory circuit.

By wiring the transistor as a common-base amplifier considerably more impedance (L1) is in the collector circuit than in the emitter circuit. Under these conditions the circuit is capable of voltage gain.

For positive feedback, the terminals of L1 must be connected to assure the transfer of positive feedback into the low impedance winding of L .

Semiconductars. Our prime concern in dealing with transistors is bias current rather than voltage, as is the case with vacuum tubes. With proper phasing of the two windings (L and L 1), an induced current in the primary L can be made to flow in a forward direction. Unlike a vacuum tube, the transistor in an oscillator circuit will not necessarily see an unchanging average bias. This is because the circuit does not contain a bias capacitor as is necessary in the case of a triode vacuum-tuhe circuit.

When voltage is first applied, the base of the transistor is, for all practical purposes (through L) at the same potential as the emitter. At this instant, the collector current is $I_{\text {co }}$ (winich designates the collectorcutoff current). This current is relatively small but increases rapidly when voltage, by the battery, is first applied to the circuit. This current flows through L1 and induces a voltage in L. With the coils correctly phased, this induced voltage produces forward bias in the base-emitter circuit causing the collector current to increase from $I_{c o}$ to a slightly higher value.

This collecto: current increase raises the forward bias in the base circuit by the transformer action of L and L 1 , in turn, increasing the collecto: current. The collector current rises until the L and L1 transformer combination saturates and transformer action diminishes.

With the loss of transformer action the induced base-emitter current falls in intensity causing the collector current to diminish. As this current lessens in intensity, $I_{c o}$ is driven below its normal quiescent point. It quickly attempts to regain the original condition that

Fig. 5A. Coupling from feedback is between L and L .

existed when the voltage was first applied and the cycle begins again-at a frequency determined by LC. Resistor R is the collector load and the voltage drop across R is usable in some external circuit where sinusoidal waves are needed.

As is the case of the vacuum-tube oscillator circuit previously described, this audiooscillator circuit is very stable if the voltage remains constant and the temperature of the oscillator components is maintained at a constant level. Fig. 4 illustrates, graphically, the action of this transistor oscillator.

Positive Feedback. Oscillators function in many ways-the fcedhack-path classes of oscillators are many. Basically they must have an external path to couple energy from the output to the input. Figs. 5A-5H give a number of circuits for transistor oscillators. All of the circuits use pnp transistors, but npn types are just as usable-changing the polarity of the voltage applied to maintain the proper bias potentials.

In Fig. 5A, the resonant circuit (LC) is in the collector and the feedback is obtained by transformer coupling from collector to base. The resonant circuit in $5 B$ is again in the collector but the coupling is to the emitter. The transformer turns ratio in this circuit (Fig. 5B) for feedback must be greater than Fig. 5A since the input impedance of the emitter is considerably lower than the base impedance.

Fig. 4. Graph of the collector-current flow in circuit of Fig. 3.

Oscillators:

Fig. 5D. Circuit is Hartley type

Fig. 5C. The DC through L and L1 is kept to just a few microamperes.

Fig. 5E. Colpitts circuit has series capacitors in LC.

Fig. 5C is basically the same as Fig. 5A except that the tank (LC) circuit is ACcoupled (shunt-fed) to the collector with a capacitor. The current in Fig. 5D can be compared to that in 5B. The autotransformer action of the tank circuit is used as the feedback circuit with capacitor C 1 used to block DC between the collector and the emitter. Fig. 5E is similar to 5A and 5D except series capacitors are used, in place of a tapped inductor, to provide the feedback path.

We have covered the requirements necessary for oscillation by defining, in both vacuum-tube and transistor circuitry, the component requirements and what these components do. To resolve the information presented thus far to elementary electronics theory we find that four prime factors are essential to oscillation:
 plitude of output signal.

Frequency Determining Network-It is necessary that an oscillator provide a self-sustained $A C$-voltage at a single frequency. Components must be selected to establish this frequency. In the oscillator circuits shown L and C are these determining elements.
Positive Feedhack-A portion of the amplified oscillatory voltage must be returned to the frequency determining network to replace resistance and radiation losses.
Amplifier-An oscillator will not sustain its output without some form of amplification. This amplifier may be either a vacuum tube or transistor.
Automatic Bias--Proper components must be selected to establish bias that will allow for sustained oscillation at some definite level. It must allow the oscillations to start with ease and must adjust itself to maintain a constant am-

Fig. 6. Code-practice oscillator has standard parts. R2 controls volume. With key open, Jl can be used as an input to amplifier circuit.

Fig. 7. Broadcaster is a phono oscillator modulated by a high-output phono cartridge. Carbon microphene or mike and preamp are needed for voice broadcasting to AM radio.

Code-Practice Oscillator. We will now consider certain specific types of oscillators and the many different applications these oscillators have in industry, the military and in our every-day life.

The schematic diagram in Fig. 6 illustrates, in a simple way, the basic statement that an oscillator amplifies and an amplifier oscillates. The connection between the collector of Q2 (through the key and capacitor C 1) to the base of Q1 is the positive feedback of an oscillatory circuit. If the key and capacitor are removed and an input signal is supplied to Jl we will have an excellent twostage audio amplifier. The volume is controlled in both cases, oscillator and amplifier, by potentiometer R2. This basic circuit, with certain refinements, is used as a preamplifier in many hi-fi sets.

Broadeaster. A wireless phonograph oscillator (Fig. 7) allows you to play records through your radio set without making any physical connection between the two units. The frequency is controlled by L. 1 and capacitors C 1 and C2. It is a direct application of the basic circuit shown in Fig. 5E.

Fig. 8. Any standard inverter transformer can be used for tl-just watch the ratings.

The signals it generates can be picked up on any AM broadcast-band receiver. The antenna cannot be longer than ten feet to remain within the limitations imposed by the FCC for radiating devices.

DC Inverter. The oscillator in Fig. 8 has sufficient power output to transform the input power to a higher voltage to power some AC device such as a shaver, a small tape recorder, a radio or some other low-power appliance. Feedback-the coupling in the transformer-is introduced between the base and collector of the 2N307A's. The transistors must be mounted on a heat sink to dissipate the heat they generate.

If there is no output from the unit when it is turned on, reverse the two transformer leads to the base connections of the transistors. Be very sure that the transistors do not make any electrical connections to the metal chassis or the heat sink.

That's the basics of oscillators. Just because you've gotten this far it doesn't automatically make you an expert-but you now know more about oscillators than your friends (that haven't read as much about them as you have).

Tiny tube of glass threads peers inside of human body-and returns images in living color. Gives the doctor a gutsy look at what's wrong

Fiber optics are the spectacular new look for both industry and medicine. Although the principle has been known for a century the technique to manufacture fiber-optic tubes had not been developed until recently. Now industry and medicine have a pencilthin tube that will let them see things that were never visible before.

Of course, the most promising aspect of fiber optics is that it allows viewing the inside of living organs-for research and diagnosis. For example, an experimental, but nonetheless alive, dog is anesthetized so that it does not feel the slim, semi-rigid tube (a catheter) being pushed through the artery in its neck . . . into its heart. Bending over the animal, the physician peers through an eyepiece and sees the rhythmic contraction and relaxation of a living heart, seen from the inside without major surgery.

Inside the 21 -inch-long tube, in a diameter half that of a cigarette, are packed 76,000 thread-like glass fibers, in two concentric bundles. The outer bundle carried light into the heart, while the thousands of fibers in the inner bundle brought back a mosaic of light and dark spots that merged into a clear image of the throbbing heart.

The instrument, which was developed by Dr. Walter J. Gamble, is one of a new gen-
eration of medical tools that is giving physicians unprecedentedly vivid glimpses of the inside of the living body. Instruments such as these take advantage of a law of optics that allows thin fibers of glass to carry beams of light the way pipes carry water-around corners or even through loops. Already very valuable for diagnosis, the fiber-optics principle also offers hope for better treatment of several conditions. And working with the American Optical Company Dr. Gamble is developing a still further improved fiber optics instrument that may be used on human heart patients.

Because the field is so new most of the work still is classified as experimental. But some fiber-optics instruments are in doctors' offices already. One is a new gastroscopeused by doctors to examine the stomach and neighboring parts of the digestive tract for possible ulcers or growths. It was developed jointly by Dr. Basil I. Hirschowitz (of the University of Alabama) and American Cystoscope Makers, Inc.

A sharp contrast to the inflexible, clumsy tube of the conventional gastroscope with its complicated system of 60 lenses, the Hirschowitz Fiberscope is slender, flexible and simple, using only four lenses. Gone is the discomfort-"Like swallowing a sword," one

Technicion looks into end of fiber-optic fube which is inserted into metol coil. He cansee flows anywhere ofong inside of coil. Tube easily surves and con follow the coil's sidden, internal surface.

Saying "Ahhh" is easier with thin optic tube attached to dentist drill for light.

No shadows or heat will mar this delicate open-heart operarion. Coollight from small fiber-optic tubes is concentrated by surgeon in precise area.

Peering into eyepiece of fiberoptic tube, technician is actually viewing the inside of a generator.

Cuiving tube doesn't bother
light waves one bif. They flow like woter inside a garden hase.

Auto mextonic looks inside of ailing gas tank with fiber-optic tube. Much sofer then a match. Application points up value of tube in industry where inaceessible oreas must be examined to head off equipment breckdown.

Below, model of heart and light-source unit. Tube illuminates inside of heart and reflects image back to a viewing lens held in the hand.

O Fiber optics

doctor said of the old instrument-and the danger of damaging delicate tissues by setting off a flashbulb inside the stomach to take a picture for later study. The Fiberscope has its light on the outside, and the illumination is good enough for motion pictures. Gone, too, are the blind spots caused by the conventional gastroscope's rigidity.

Working with the 'Children's Hospital Medical Center in Boston, Dr. Gamble has used another fiber optics instrument to measure oxygen content of the blood in heart patients. Surgeons need this information to measure the seriousness of heart defects that allow oxygen-poor blood to seep through faulty heart valves or holes in the heart walls. In his tests, Dr. Gamble has found that fiber optics avoids the disadvantages of other methods of determining oxygen content.

After a fiber-optics tube goes into the heart, brief pulses of light are flashed through it. By analyzing the light that comes back, an accurate blood-oxygen content reading is obtained, up to 20 times faster than some methods, and without the continuous withdrawal of blood samples that other methods require.

In a variation on the technique, Dr. Gamble adds a dye to the blood stream to measure the heart's blood-pumping capacity. His aim is the long-sought goal of heart surgeons; instantaneous measurement of
heart pumping capacity. Also, in open heart operations, fiber-optics tubes can focus light directly on the area the surgeon is working on. This is a great advantage because overhead lights are often obstructed by people or instruments. Lights close to the spot are sometimes cumbersome, and they give off heat which might cause complications. Fiber optics tubes, which draw their light from distant sources, cause no heat problems.

One of the most productive fiber optics inventors is Narinder S. Kapany, a turbanwearing native of India who works now in Palo Alto, California. Kapany is working closely with doctors at Stanford University on several fiber optics instruments for internal examinations. He's already worked out two other devices, a hypodermic microscope that uses fiber optics to examine tiny blood vessels, and an experimental fiber optics image intensifier that permits a manyfold reduction of X-ray exposure with no loss in clarity of X-ray films.

Kapany is working on a fiber-optics device that would be inserted in a patient's artery to monitor the blood stream, sending out data that would keep doctors constantly informed about the patient's condition for diagnosis or treatment. Kapany says this development 'is on the threshold.'

All fiber-optics instruments have their origin in the phenomenon of refraction-the bending of a beam of light at the boundary between materials of different densities. If light hits the boundary at a sufficiently shallow angle, it never crosses, but is reflected back. This is what happens in the fiberoptics instruments: light ricochets down the
(Continued on page 109)

[^3]

David Sarnoff
 Continued from page 42

After less than an hour, Sarnoff was convinced Zworykin's idea of a tube could be the answer to electronic television, and invested $\$ 50,000000$ in the new development before he could sell a single set.

As one associate who was close to him then said, "Everyone told Sarnoff television would never be possible. It was simply too complicated for the state of the art at that time." But as this person described it, Sarnoff paid no attention to his detractors, simply "looked up over the trees," kept on going until television, the impossible, became a reality.

Others. While the ultimate fulfillment of television was probably his greatest achievement, there were others too numerous to mention in a single article, for engineers under his dynamic leadership developed products that affected almost every area of living.

Walkie-talkies were a Sarnoff pet as was electronic air conditioning and electronic tape. He simply suggested his engineers present them as presents, for as he said, he had more faith in their abilities to create new products than they had in themselves.

For in the years serving as general manager, to chief executive, Sarnoff leadership brought a host of developments. RCA introduced the first AC operated superheterodyne radio receiver (Radiola 60), the forerunner of today's hi-fi components. (Model 104 and 104 uncluded power amplifiers and loudspeakers), and the ancestors of todays packaged electronic circuits.

Record Player. Shortly before World War II, RCA introduced an automatic record player which played both sides of a record without turning it over. Its special tone arm had a two-headed pick-up which played the top of the record and then the bottom.

RCA, besides being an innovator, sticks to its guns when it visualizes a future potential. For example, the company made a success out of its $45-\mathrm{rpm}$ phonograph record. After having develcped a clever and simple record changer plus a new kind of record to be played on it, CBS got to the market first with the $331 / 3 \mathrm{rpm}$ LP record. For a while it looked like RCA would give up the 45rpm LP record which was not really new, but an imp-ovement over Edison's long-
playing record which had been shown for decades at the Edison museum. Today the record companies produce both kinds, for each fill a certain need.

In the industrial fields, RCA introduced bottle inspection machines which detect foreign particles in liquids, the electron microscope, blood analysis devices, and vehicle detectors for use in traffic signal control systems. More than ten years ago, RCA demonstrated driverless cars which could be operated safely on busy highways, developed an electronic highway that would make accidents a thing of the past.

There is hardly an application of electronics RCA has not explored. In some areas, it is undisputed leader, but it certainly does not monopolize the industry. In the land mobile two-way radio field, RCA is in third place, behind Motorola and GE. IBM is way out in front in the computer field.

Other Areas. In other areas, RCA bought the Marconi Institute from the United Wireless Telegraph Company, formed the Radio Institutes of America in 1919, where Sarnoff taught as one of its first chief instructors. Today RCA Institute ranks on the technical educational level as M. I. T. ranks tops training engineering and scientific talent.

In 1926. Sarnoff founded the first national broadcasting network, added to programming such names as Dr. Walter Damrosch, and the famed Yale President Dr. James Rowland Angell as educational counsellor at the time. Not satisfied even then, he sent his musical conductor to Italy to woo back to the United States the then retired (Concluded overleaf)

An Editorial Note

The whole David Sarnoff story cannot be told in one magazine article, nor is it to be found in Sarnoff's recently published biography (See page 21). There is much, much more, particularly about the achievements of RCA scientists and engineers hand picked by Sarnoff or by executives under his leadership that cannot be told here because of lack of space. We are indebted to Leo G. Sands and K. C. Kirkbride for contributing their research and writing efforts to the preparation of this article and we pray the editorial preparation of text and photographs will do proper justice and praise to the man who put America "On the air."

Julian M. Sienkiewicz, Editor

DAVID SARNOFF'S CAREER WITH RCA

1906-Entered the employ of the Marconi Wireless Telegraph Company of America as office boy (September 30).

1907-Junior Telegraph Operator, Marconi Company.
1908-Wireless Operator at Marconi Station, Siasconset, Nantucket Island, Mass.
1909-Manager, Marconi Station, Sea Gate, New York.
1910-1911-Ship Wireless Operator.
1911-1912-Wireless Operator at Marconi Station, John Wanamaker Store, New York City.
1912-Radio Inspector for Marconi Com. pany, and Instructor, Marconi Institute.
1913-Chief Radio Inspector and Assistant Chief Engineer, Marconi Company.
1914-Contract Manager, Marconi Company.
1915-1916-Assistant Traffic Manager, Marconi Company.
1917-1919-Commercial Manager, Marconi Company.
1919-1920-General Manager, Radio Corporation of America, which absorbed Marconi Company.
1921-General Manager, RCA (April 29).
1922-Vice President and General Manager, Radio Corporation of America (September 8).
1927-Elected Member of the Board of Radio Corporation of America (December 16).
1929-Elected Executive Vice President, Radio Corporation of America (January 1).
1930-Elected President of RCA (January 3).

1947-Elected Chairman of the Board of Directors and Chief Executive Officer of the Radio Corporation of America (July 11).
1966-Relinquished his role as Chief Executive Officer, retaining active Chairmanship of the Board of Directors.

Maestro Arturo Toscanini to conduct the newly formed NBC Symphony Orchestra.

Color. But as these early broadcasting efforts and television programming efforts matured, Sarnoff began to see visions of telecasting in color. Others were willing to settle for a mechanical television but not Sarnoff. The electronic color tube could be perfected he said, and he saw that it was. Not only perfected, but finally accepted.

It may have been this propensity for winning that earned acclaim from General Dwight Eisenhower who on November 21,

1944, nominated him for promotion from Colonel in the Signal Corps to Brigadier General. The Army General cited him for his contribution to communications of historic D Day. President Franklin D. Roosevelt awarded him the Legion of Merit for military services and he has been awarded numerous honorary doctor's degrees by colleges and universities.

One Loss. But Sarnoff will be the first one to admit he didn't always win. On April 5, 1955, he presented to President Eisenhower, a "program for political offensive against world communism," in which he urged we "win the cold war as the surest way to prevent hot war." His proposals attracted international attention, and teamed with Senator Karl Mundt's proposals for a Freedom Academy, a school to teach psychological warfare, might have saved us troubles today, if they had been thoroughly carried out.

More Boxes. Sarnoff is not a man to think of the past. He sees a future ahead full of many more "music boxes." From where he sits in his 53rd floor office ia the 70-story RCA Building, guiding a two-billion-dollar company that produces giant brains, huge radars to track missiles, satellites that photograph the moon, he sees still another communication explosion ahead.

One so fantastic we will speak to anyone anywhere in the world, an international television network telecasting in color to every home in the world. And electronic medicine advances that will lengthen the lifespan of man, perhaps to a century. As he says with a broad smile, "This ancient world of ours is stirring with change."

"His folks have color TV, that's why . . ."

Volume 46, No. 1

An up-to-date Broadcasting Directory of North

American AM, FM and TV Stations. Including a

Special Section on World-Wide Short-Wave Stations

I"this issue of White's Radio Log we have included the following listings: U.S. AM Stations by Frequency, Canadian AM Stations by Frequency, U.S. Commercial Television Stations by States, U.S. Educational Television Stations by States, Canadian Television Stations by Cities, and the WorldWide Short-Wave Stations.

In Our Next Issue. October-November 1966, the Log will contain the following listings: U.S. AM Stations by Location, U.S. FM Stations by States, Canadian AM Stations by Location, Canadian FM Stations by Location, and the expanded Short-Wave Section. The siort-wave listings will always be completely revised in each issue of Log to insure 100 percent up-to-date information.

In the December-January issue of RadioTV Experimenter, the Log will contain the
following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and the expanded World-Wide Short-Wave Section.

Therefore, in any three consecutive 1966 issues of Radio-TV Experimenter magazines, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that can not be offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. AN Stations by Frequency90Canadian AM Stations by Frequency 100
U.S. Commercial Television Stations by Sates 101
U.S. Educational Television Stations by States 103
Canadian Television Stations by Cities 104
World-Wide Short-Wave Stations 105

WHITE'S

U.S. AM Stations by Frequency

U, S. stations listed alphabetically by states within groups. Abbreviations: Kc., frequency in kilocycles; W.P., power in watts; d. operates daytime only; n, operates nighttime only. Wave length is given in meters.
Kc. Wove Length W.P.|Kc. Wave Length

540-555.5

KV1P Redding, Calif.
KFMB San Diego, Calif. 5000 d WGTO Cypress Gardens,

Fíl. 50000d
WDAK Columbus, Ga. 5000 KBRV Soda Springs, Idaho 500d KNOE FL. Dodge, lowa 5000 d W DMV Pocomoke City, Md. 5000 WBIC Islip, N.Y. WETC Wendell.Zebulon.

WARO Canonsburg, Pa WYNN Florence, s.C. WRIC Richlands. Va. WYLo Jackson, Wis.
550-545.1
KENI Anchorage, Alaska
KAFY Bakersfield.
KAFY Bakersfield, Calis. WAYR Orange Park
WAY
WGGA Gainesville, Ga.
KFRM Salina, Kans.
WCBI Columbus, Miss.
KSD St. Louis, Mo.
KBOW Butte. Mont.
WGR Buffalo. M.Y.
WDBM Statesville, N.C.
KFYR Bismarck. N.Dak.
WKRC Cincinnati, Ohlo
WHLM Bloomsburg. Pa.
WPAB Ponce, P.R.
WXTR Pawtueket, R.I.
KCRS Midland, Tex.
KTSA San Antonio, Tifx.
WVA Waterbury. Vi.
WSAU Wausau, Wis.
560-535.4
WOOF Dothan, Ala. KYUM Yuma. Ariz. KSFO Dan Fran. WQAM Miami, Fia WMIN Chicago. III. WMIK Middlesboro. Ky. WGAN Portland, Main
WFRB Frostburg, Md. WHYN Springfield, Mass WQTE Monroe, Mich. WEBC Duluth. Minn. KWTO Springfeld. Mo. KMON Great Falls. Mont. WGAI Elizabeth City. N.C
WFIL Philadelphia. Pa. WFIL Philadelphia. WISBColumbia, S.C. KLVI Beaumont, Tex. KLVI Beaumont, Tex.
KPQ Wenatehee. Wash. WJLS Beckley, W.Va.
570—526.0
WAAX Gadsden, Ala.
KCNO Alturas, Calli. KGAC Los Angeles, Calif. WFSO Pinellas Park, Fla. WACL Wayeross, Ga. WKYX Paducah, Ky. WVMI Biloxi. Miss. KGRT Las Cruess, N. Mex WMCA New York. N.Y WSYR Syracuse, N. Y. WWNC Asheville, N.Y.C. WLLE Raleigh, N.C.
WKBN Youngstown, WNAX Yankton, S.Dak. WFAA Dallas, Tex.
WBAP Ft. Worth, Tex.
$1000 d$
$5000 d$
5000 d
5000

5000
$500 d$
5000
5000
5000
5000
5000

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1966 by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, Inc.,
 505 Park Avenue, New York, New York 10022.

N.

250 d
250 d
250d
1000 d
1000 d
250

5000
5000
1000
1000
1000
$1000 d$
5000
1000
5000d
1000
5000
5000
1000
1000
5000
500 d
5000 5000
5000
5000
1000

1000 5000

5000
1000
5000 5000
5000
5000 5000
5000 5000 5000 5000 d

50000 1000 5000

 5000 5000KLUB Salt Lake City, Utah 5000 WMAM Marinette, Wis. 5000
580—516.9
WABT Tuskegee, Ala.
KTAN Tucson, Ariz KUBC Montrose. Colo WDBO Orlando, Fla. WGAC Augusta, Ga. KFXD Nampa, Ida
WILL Urbana, Ill. KSAC Manhattan. Kans. WIBW Topeka, Kans. KALB Alexandria, La.
WTAG Worester, Mass WELO Tupelo. Miss. KANA Anaconda, Mont.
WAGR Lumberton, N.C. KAGR Lumberton,
WHP Harrisburg, Pa. WKAQ San Juan, P.R. WRKH Rockwood, Tenn. KDAV Lubboek. Tex. WLES Lawrenceville, Va,
WCHS Charleston. W.Va WKTY LaCrosse, Wis.
590-508.2

KHAR Anchorage, Alaska

 WRAG Carrollton. Ala. KFXM San Bernardino. Cal KTHO Tahoe Valley, Calif. KDi Pueblo, Colo. WPLD Panama City, Fla. KGMB Atianta, Ga. KID Idaho Falls. Hawai WRTH Wood River, $l l$. WVLK Lexington, Ky. WEEI Boston. Mass. WKZO Kalamazoo, Mich KGLE Glendive, Mont. WOW Omaha, Nebr. WROW Albany, N.Y. WGTM Wilson. N.C. KUGN Eunene, Oreg. WARM Scranton, Pa. WMBS Uniontown. Pa. KTBC Austin. Tex. KSUB Cedar City, Utah WLVA Lynchburg, Va KHQ Spokane. Wash.
600-499.7

wirB Enterprise, Ala. KCLS Flagstaff. Ariz. KVCV Redding, Calif. KOGO San Diego, Calif. K21X Ft. Collins, Colo.
wice Bridgeport, Conn WICC Bridgeport, Conn. WMT Cedar Rapids, lowa WWOM New Orleans, La
 5000
1000 d WCAO Caribou, Maine WLST Escanaba, Mich WTAC Flint, Mích.
5000
5000
5000

$$
\begin{array}{l|l}
5000 & \text { KGEZ Kalispell, Mont. } \\
5000 & \text { WCVP Murphy. N.C. } \\
5000 & \text { WSJS Winston-Salem. }
\end{array}
$$

500d
5000
5000
5000

$$
\begin{array}{l|l}
5000 & \text { WCVP Murphy. N.C. } \\
5000 & \text { WSJS Winston-Salem, N.C. } \\
500 \text { (} & \text { KSJB Jamestown. N.D. }
\end{array}
$$

5000 WSOM Salem, Onio.

000 WFPM Salem, Ohio

5000 KROD EI Paso, Tex.
5000 KERB Kermit. Tex.

Kc. Wave Length W.P.

WTOR Torington. Conn. WIOD Miami. Fla. Conn WMEL Pensacola, Fla. WCEH Hawkinsville, Ga. KUAM Agana, Guam WDAL Duluth, Minn. WDAF Kansas City, Mo
KOJM Havre, Mont. KCSR Chadron, Nebr. WGIR Manchester, N. KGGM Albuquerque, N. Mex. WAYS Charlotte. N.C. WTVN Columbus. Ohio WIP Philadelohia. Pa, KILT Houston. Tex. KVNU Logan, Utah
WSLS Roanoke, Va. WHPL Winchester, Va. KEPR Kennewick-Richmond

Pasco, Wash. 5000
620-483.6

KTAR Phoenix, Ariz. KNGS Hanford, Calif.

 \begin{tabular}{ll} KNGS Hanford, Calif. \& 1000

\hline KWS
\end{tabular} KWTR Grand Shasta, Calif. 1000d WSUN St. Petersburg. Fla. 5000 WTRP LaGrange, Ga. KWAL Wallace, I daho KMNS Sioux City. Lowa

WTMT Louisvilie, Ky. WTMT Louisville Ky. WLBZ Bangor, Maine
WJDX Jackson Miss WJDX Jackson. Miss. WVN Newark, N.J. WHEN Syracuse. N.Y. WDNC Durham, N.C. WHIB Greensburg. Pa. WHIB Greensburg.
WCAY Cayce, S.C. WATE Knoxvillo, Tenn. KWFT Wichita Falls. Tex. WWNR Beckley, W,Va WTMJ Milwaukee, Wis.

630-475.9

WAVU Albertville, Ala. WJDB Thomasville, Ala KJNO Juneau, Alaska KVMA Magnolia, Ark. KIDD Monterey, Calif. KHOW Denver, Colo. WMAL Washington. D.C. WSAV Savannah. Ga.
WNEG Toccoa, Ga. KIDO Boise, Idaho WLAP Lexington. Ky. KT1B Thibodaux, La. WJMS Ironwood, Mich. KDWB So. St. Paul. Minn. KXOK St. Louis. Mo. KGY Belgrade.
KOH Reno, Nev .

KLEA Reno, Nev.

 KLEA Lovington, N. Mex. WIRC Hickory. N.C N. M KWFO Wilmington, N.C. KWRO Coquille, Oreg.WEJL Scranton, 000d WEJL Scranton, Pa 5000

660-454.3

KFAR Fairbanks, Alaska KOWH Omaha, Neb. WNBC New York, N.Y KSKY Dallas. Tex.

670—447.5

KBOI Boise, Ida.

 WMAQ Chicago. Ili. KNBR San Fran., Calif.Kc. Wave Length W.P
680-440.9
KNBR San Francisco, Cal. 50000 WPIN St. Petersburg. Fla. I000d WATY N. Atlanta, Ga. 5000 $\begin{array}{lr}\text { WCTT Corbin, Ky. } & 1000 \\ \text { WCBM Baltimore, Md. } \quad 10000\end{array}$ $\begin{array}{ll}\text { WNAC Boston, Mass. } & 50000 \\ \text { WDBC Escanaba Mich. } & 10000\end{array}$ $\begin{array}{lr}\text { KFEQ St. Joseph, Mo. } & 10000 \\ & 5000\end{array}$ $\begin{array}{ll}\text { WINR Binghamton, No.Y. } & 1000 \\ \text { WNYR Rochester N. Y. } & 250\end{array}$ $\begin{array}{lr}\text { WNYR Rochester, N.Y. } & 250 \\ \text { WPTF Raleigh, N.C. } & 50000 \\ \text { WISR Butler Pa }\end{array}$ $\begin{array}{lr}\text { WPTF Raleigh, N.C. } & 50000 \\ \text { WISR Butler, Pa. } & 250{ }^{2}\end{array}$ $\begin{array}{ll}\text { WAPA San Juan. P.Rico. } & 10000 \\ \text { WMPS Memphis, Tenn. } & 10000\end{array}$ $\begin{array}{ll}\text { KBAT San Antonio, Tex. } & 50000 \\ \text { KOMW Omak. Wash. }\end{array}$ WCAW Charleston. W.Va. I0000d 690-434.5
WVOK Birmingham. Ala. 50000 d $\begin{array}{ll}\text { KEOS Flagstaff, Ariz. } & 1000 \\ \text { KEVT Tucson, Ariz. }\end{array}$ KEVT Tucson, Ari
KBBA Benton, Ark.
$\begin{array}{ll}\text { KAPA Pueblo, Colo. } & 250 \mathrm{~d} \\ \text { WADS Ansonia, Conn } & 500 \mathrm{~d}\end{array}$
WADS Ansonia, Conn. 500 d
$\begin{array}{ll}\text { WAPE Jacksonville, Fla. } & 50000 \\ \text { KULA Honolulu, Hawaii } & 10000 \\ \text { KBLI Blackfoot. ldaho } & 1000 \text { d }\end{array}$
$\begin{array}{ll}\text { KGGF Coffeyville, Kans. } & 10000 \\ \text { WTIX New Orleans, La. } & 5000\end{array}$
KTCR Minneapolis, Minn. $\quad 5000$
KSTL St. Louis, Mo.
KSTL St. Louris, Mo. lo00d
$\begin{array}{ll}\text { KEYR } \\ \text { KRCO Princtown. Nebr. } & 1000 \mathrm{~d} \\ \text { WXU }\end{array}$
$\begin{array}{lr}\text { KRCO Princvitie, Oreg. } \quad 1000 \mathrm{~d} \\ \text { WXUR Media, Pa. } & 500 \mathrm{~d} \\ \text { KUSD Vermillion. }\end{array}$
$\begin{array}{ll}\text { KUSD Vermillion, S.Dak. } & 1000 \mathrm{~d} \\ \text { KHEY El Paso. Tex. } & 10000 \\ \text { KPET Lamesa. Tex. } & 250\end{array}$
$\begin{array}{lr}\text { KPET Lamesa. Tex. } & 250 \\ \text { KZEY Tyler. Tex. } & 5000 \\ \text { WCYB } & \end{array}$
$\begin{array}{llr}\text { WCYB Bristol, Va. } & 10000 \mathrm{~d} \\ \text { WNNT Warsaw. Va. } & 250 \mathrm{~d}\end{array}$
WELD Fisher. W.Va.
$700-428.3$
WLW Cincinnati. Ohlo 50000
$710-422.3$

| 1000d | WKRG Mobile, Ala. | 1000 |
| :--- | :--- | :--- | ---: |
| 1000 d | KMPC Los Angees. Calif. | 50000 |
| 1000 | KBTR Denver, Colo. | 5000 |

$\begin{array}{lll}\text { KBTR } \\ \text { WGBS Miami. Fla. } & 5000 \\ \text { WUFF } & 50000\end{array}$
$\begin{array}{ll}\text { WUFF Eastman, Ga. } & 1000 \mathrm{~d} \\ \text { WROM Rome.Ga. } & 1000 \mathrm{~d} \\ \text { KEEL Shreveport, La. } & 50000\end{array}$
$\begin{array}{ll}\text { KEEL Shreveport, La. } & 50000 \\ \text { WHB Kansas City, Mo. } & 10000\end{array}$
$\begin{array}{ll}\text { WHB Kansas City, Mo. } & 10000 \\ \text { WOR New York. N.Y. } & 50000 \\ \text { DZRH Manila, P.I. } & 10000\end{array}$
ORRH Manila, P. .'.
WKJB Mavaguez. P.Rlco 100
WTPR Paris. Tenn.
$\begin{array}{lr}\text { KGNC Amarillo. Tex. } & 10000 \\ \text { KURV Edinburg. Tex. } & 250\end{array}$
$\begin{array}{lr}\text { KURV Edinburg, Tex. } & 250 \\ \text { KIRO Seattle, Wash. } & 50000 \\ \text { WDSM Superior, Wis. } & 5000\end{array}$
$720-416.4$
$\begin{array}{lr}\text { KUAI Eleele, Hawaii } & 5000 \\ \text { WGN Chicago. III. } & 50000\end{array}$
730-410.7
WJMW Athens, Ala. 1000
KSUD W. Memphis, Ark. $\quad 2500$
WLOR Thomasville. Ga. $\begin{array}{ll}\text { WLOR Thomasville. Ga. 5000d } \\ \text { KLOE Goodland, Kans. } & 1000 \mathrm{~d}\end{array}$ WF MW Madisonville, Ky $\quad 500$
WMTC Van Cleve, Ky. 1000 d KTRY Bastrop, La WARB Covington. L WJTO Bath. Maine WVIC E. Lansing, Mich. KWOA Worthington. Minn. lo00d
WWR KURL Billings, Mont.
KVOD Albuquerque. N. Mex. 1000 d WDOS Oneonta, N. Y. Mex. 1000 d
WFMC Goldshoro. N. WOHS Shelby, N.C. $1000 d$ WMGS Bowling Green, Ohio lo00d
KBOY Medford, Oreg.
WMA WNAK Nanticoke, Pa. 1000 d $\begin{array}{ll}\text { WPIT Pittsburgh, Pa. } & \text { 5000d } \\ \text { WPAL Charleston, S.C. } & 1000 \mathrm{~d} \\ \text { WLIL Lenoir. }\end{array}$ WPCN Grand Prairie, Tex. 1000 d
KPC $\begin{array}{ll}\text { KSVN Ogden, Utah } & 1000 \mathrm{~d} \\ \text { WPIK Alexandria. Va, } & 5000 \mathrm{~d}\end{array}$
50000 50000

WMNA Gretna, Va.
WMNA Gretna, Va.
KULE Ephrata, Wash.
WXMT Merill, Wis.

Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.

740—405.2
WBAM Montgomery. Ala. 50000 d KUEQ Phoenix, Ariz.
KCBS San Franciseo, Calit 10000 d
KSSS Colo, Springs, Colo. 1000 KVFC Cortez, Colo. WSBR Boca Raton. Fla.
WKiS Oriando, Fla* KYME Boise, Idaho WVLN Blney, lli.
KBOE Oskaloosa. Iowa
WYHR Cambridge, Mass. KPBM Carlsbad. N. Mex. WGSM Carisbad. N. Mex. WMSM Huntington. N. $\quad 5000 \mathrm{~d}$ WMBL Morehead City. N.C. 1000 d KRMG Tulsa 0kI N.C. 5000 KRMG Tulsa. Okla.
WIAC San Juan, P. Rieo WBAW Barnwell, s.c. WJIG Tullahoma, Tenn. KTRH Houston. Tex.
KCMC Texarkana. Tex.
WBCI Williamsbura, Va.
750-399.8
KFQO Anchorage, Alaska WSB Atlanta, Ga.
WBMO Baltimore. Md.
1000 d KHM Grand Sland, Neb. 10000 d WEB portsmouth. N.H.
KSEO Durant, Okla.
WPOX Clarksburg. W
WHA Madison, Wis.

$$
\begin{aligned}
& 1000 \mathrm{~d} \\
& 5000 \mathrm{~d}
\end{aligned}
$$

760-394.5
KFMB San Diedo, Cal. KGU Honolulu. Hawa WCPS Etroit. Mich. WCPS Tarboro, N.C.

770-389.4

KUOM Minneapolis, Minn.	5000 d
WCAL Northfield, Minn.	5000 d
WEW St. Louis. Mo.	1000 d
KOB Albuquerque. N.Mex.	50000
WABC New York, N.Y.	50000
KXA Seattle. Wash.	1000

780-384.4
WBBM Chicago. III. WJAG Norfolk. Neb. WCKB Dunn, N.C. WBBO Forest City. N.C. KSPI Stillwater, Okla.
WAVA Arlington, Va.
790-379.5
WTUG Tuscaloosa, Ala. KCAM Glennallen, A KOSY Texarkana. Ark. KDAN Eureka, Calif. KABC Los Angeles. Calit. WLBE Leesburg. Fia. WFUN Miami Beaeh, Fla, WYNR Brunswick, Ga. WGRA Cairo. Ga.
KONA Kealakekua, Hawaii KEST Boise, Idaho
WRMS Beardstown, I
KXXX Colby, Kans.
KXXX Colby, Kans.
WAKY Louisville,
WAKY Louisville, Ky.
WSGW Sapinaw, Mieh. WSJC Magee, Miss.
KGHL Billings. Mont. WWNY Watertown, N. WTNC Thomasville, N.C. KXGO Fargo, N. Dak, KWIL Albany, Oreg.
WAEB Allentown, Pa. WPAEB Allentown,
WEAN Providence, R.I.
WWBO Bamberg-Denmark. WETB Johnson City, Tenn. WMC Memphis. Tenn. KTHT Houston, Tex. KFYO Lubbock. Tex. WSIG Mount Jackson, Va WTAR Norfolk. Va
KGMEW Borlaham. Wash
KNEW Spokane, Wash
800-374.8
WMGY Montgomery, Ala. KINY Juneau, Alaska
KAGH Crossett, Ark.
5000
10000
50000
1000 d
5000

0

50000
1000 d
1000 d
1000 d
1000 d
$\xrightarrow{250 \mathrm{~d}} 1000 \mathrm{~d}$

$$
\begin{aligned}
& 1000 \mathrm{~d} \\
& 5000
\end{aligned}
$$

$$
\begin{array}{r}
5000 \\
5000 \mathrm{~d} \\
5000
\end{array}
$$

$$
\begin{array}{r}
1000 \\
5000 \mathrm{~d}
\end{array}
$$

WHOS Decatur, Ala.
5000 d
5000
5000
5000
1000 d
1000
1000 d
500 d
5000 d
5000
5000
1000 d
5000产管
1000
1000d
1000 d
5000
1000
10001000 d5000
1000 d
1000 d
50001000 d
5000
5000
5000
co0d
1000 d1000 d
500050005000
1000d
1000d

KUZZ Bakersfleld, Calif. KDAD Werd, Calif. KBRN Brighton, Colo. wSUz Palatka. Fla. WJAT Swainsboro. Ga WKZI Casey. III. KXIC lowa City. Iowa WCCM Lawrence, Mass, KREI Farmington. Mo. KDBM Dillon, Mont. KJEM Okla. City, okla KPDQ Portland, Ore. WCHA Chambersburg, Pa. WDSC Dillon. S.C. WEEB Sweetwater, Tenn. KDDD Dumas. Tex. KBUH Brigham City. Utah 0000
1000 d 250 d 250 d 0 8 KGO San Franciseo. Calif. 50000 WATI Indianapolis, Ind. 2500d wIPE Annapolis. Md. WJPW Rockford. Mich. WSJC Magee, Miss. KCMO Kansas City, Mo. WGY Schenectady, N.Y. WKBC N. Wilkesboro. N.C. WCEC Rocky Mount, N.C. 1000 d WEDO McKeesport, Pa. $\quad 1000 \mathrm{~d}$ WKVM San Juan, P.R. $\quad \begin{aligned} & 25000 \\ & \text { WMTS Murfresboro, Tenn. } \\ & 5000 \mathrm{~d}\end{aligned}$

820-365.6

WAIT Chicago. III. WIKY Evansville, Ind. WFAA Dallas, Tex.
WBAP Ft. Worth. Jex.
830-361.2
KIKI Honolulu, Hawai
WCCO Mineapolis-St. Paul,
KOFI Kalispell. Mont. $\quad 1000$ KBOA Kennett. Mo. 1000 d WNYC New York. N.Y.
840-356.9

\section*{}5000 WTE Pittsburgh. Pa, 1000 d5000 WTEL Philadelphia, Pa. 10000 d| 250d | |
| :--- | :--- |
| 250 d | WLBG Laurens. S.C. |
| KFST Ft. Stockton, Tex. | 1000d |
| 250d | |

5000d
1000 d 500 K KNO San Antonto. Tex. 1000 d
1000 d lou0d WEVA Emporia, Va. WOAY Oak Hill, W.V. WFOX Milwaukee, Wis.
870-344.6

KIEV Glendale. Calif. KAIM Honolutu, Hawaii WWL New Orleans, La. WHCU Ithaca, N. Y. WGTL Kannapolis. N.C WHOA San Juan, P.R. KJIM Ft. Worth. Tex. WFLO Farmvillo, Va.

```
880-340.7
```

WCBS New York, N.Y. 50000 WRRZ Clinton, N.C. 890-336.9
WLS Chicado, III.
WHNC Henderson. N.C.
KBYE Okla, City, Okla.
900-333.1
WATV Birmingham, Ala. WGOK Mobile, Ala. WOZK Ozark, Ala. KPRE Fairbanks. Alaska KHOZ Harrison. Ark
KBIF Fresno, Calif.
KBIF Fresno, Calif.
KGRB West Covina KGRB West Covina, Cal. WJWL Georgetown, Del. WSWN Beile Glade, Fla.
W MOP Ocala, Fla. WMOP Ocala, Fla. WCGA Calhoun, Ga
WCRY Macon, Ga. WCRY Macon, Ga. WEAS Savannah, Ga. KTEE Idaho Falis, Ida. KSIR Wichita, Kan.
WFIA Louisville, Ky. WLSI Pikeville, Ky. KREH Oakdale, La.
WCME Brunswick, Maine WCME Brunswick,
WLMD Laurel, Md. WATC Gaylord, Mich. KTIS Minneapolis. Minn. WDDT Greenville, Miss. KFAL Fulton, Mo KJSK Columbus, Nebr.
WOTW Nashua. N H. WOTW Nashua. N.H.
WBRV Boonvilie. N.Y. WAYN Rockingham Naratoda Springs, Y
N. Y . WIAM Williamston, N.C.
KFNW Fargo, N.Dak. WCNS Canton, Ohto WFRO Fremont, Ohio WCPA Clearfield Pa WFLN Philadelphia, Pa.
WKXV Knoxvilie. WKXV Knoxvilie. Tenn
WCOR Lebanon. Tenn. WCOR Lebanon, Tenn.
KALT Atlanta. Tex. KALT Atlanta. Tex. KMCO Conroe, Tex.
KFLD Floydada. Tex KFLD F Hamilton, Tex. WODY Bassett, Va. WAFC Staunton, Va, WATK Antigo, Wis. $910-329.5$

WDVC Dadeville, Ala.

 KPHO Phoenix, Ariz. KLCN Blytheville, Ark. KAMD Camden, Ark.KDEO E! Cajon. Calif. KEWB Oakland, Calif. KOXR Oxnard, Cal. KPOF nr. Denver, Colo.
WRCH New Britain, Co WPLA Pew Britain, Conn WGAF Valdosta, Ga. KBGN Caldwell, Ida. WAKO Lawrenceville. Ill.
WSUI lowa City, Iowa WSUI lowa City, WLCS Baton Rouge. La. WABI Bangor, Maine WFDF Flint, Mich. WCOC Meridian, Miss.
KOYN Billings, Mont. KYSS Missoula, Mont. KB!M Roswell, N. M.
WRKL NewCity, N.Y. WRKL New City, N.Y.
WLAS Jacksonville. N.C. KCJB Minot, N.Dak WBRJ Marietta, O.
WPFB Middletown. Ohio KGLC Miami, Okla. KURY Brookings. Or WAVL Apollo. Pa.
WGBI Scranton. Pa. WGBI Scranton. Pa

WHITE'S

Kc. Wave Length W.P.

940-319.0
KHOS Tusson, Arlz: KFRE Fresno Califi.
WINE Brookfield. Conn WINZ Miami. Fla. MAZ Macono Ga. KAHU Waipahu, Hawaii KIOA Des Moines, lowa WCND Shelbyville, Ky. WYSD Now Orleans, La. WJOR South Haven. Mich. KCPC Houston, Miss KVSH Valentine. Nobr WFNC Fayettoville, N.C. WCND Shelbyville, N.Y KGRL Bend, Orea KWRC Woodburn, Ore. WESA Charlerol, Pa. WIPR San Juan. P.R. KIXZ Amarillo, Tex. KTON Belton, Tex. KATG Toxarkana, Tox
WFAW Ft. Atkinson, wis.

950-315.6

WRMA Montgomery. Ala. KIBH Seward. Alaska
KXJK Forrest Clty, Ark KFSA Ft. Smith. Ark. KAHI Auburn, Calif. KLMN Denver, Colo. WGTA Summerville. Ga. WGOV Valdosta, Ga. KBOI Boise. Idaho KLER Orotino, Idaho WXLW Indianapolis, Ind. KOEL Oelwain, Ia, WRYI Rarbourville. Ky WAGM Presque Isle. Ky. loond WXLN Potomac-Cabin John,

WDRL Boston, Mass.

\section*{| KRS: Detrait. Mleh. | 50000 |
| :--- | ---: |} wRKM Hattiesbure, Miss. 5000d KLIK Jefferson City, Mo. 5000d WHVW Hyde Park. N.Y. WBEX Rochester, N. KYET Greensboro, N.C WNCC Barnesboro, Pa.

WPEN Philadelphia, Pa.

 WSPA Moncks Corner. S. KWAT Wpartanburg' S.C. WAGG Franklin. Tenn. KOSX Denison-Sherman, Tox KPRC Houston, Tex. KSEL Lubboek, Tex. KMER Kemmerer, Wash. KJR Seattle. Wash. WKAZ Charleston, w is WKTS Sheboygan. Wis. KMER, Kemmerer, Wyo.960-312.3
WBRC Birmingham, Ala. WMDZ Mobile. Ala.
KAVR Apple Valley. Calif. KNEZ Lompoc, Calif.

KABL Oakland. Calif

WELI New Haven, Conn. WGRD Lake City, Fla. wJCM Sebring. Fla. WIAZ Albany, Ga. KRFC Athens. Ga. WDLM E. Moline. III WSBT South Bend, Ind KMA Shenandoah Iow. WPRT Prestonsbure, Ky KROF Abbeville, La, WBOC Salisbury, Md WFGM Fitehburg Mase. WHAK Rogers City, Mich. 5000 d $\begin{array}{ll}\text { KLTF Little Fails, Minn. } & 500 \mathrm{~d} \\ \text { WABG Greenwood. Miss. } & 1000\end{array}$

5000
1000
5000
1000
5000
5000 d
500
500
5000
5000
5000
500 d
1000 d
5000
5000
5000
5000
1000 d
1000 d
5000
5000

5000 d

5000

10000
5000 d
5000 d
10000
10000
1000 d
10000
10000
5000
5000
1000 d
1000 d
50000 d
500 d
500 d
5000 d
5000 d
10000
10000
250 d
250d
250d
1000 d
250 d
250 d
250d
1000 d
$\begin{array}{r}10000 \\ 5000 \\ \hline\end{array}$
5000
1000 d
1000 d
5000 d
250
$\begin{array}{r}1000 \mathrm{~d} \\ 1000 \\ \hline\end{array}$
5000 d
KOOK Billings, Mont.
5000 d KJLT No. Platte. Nebr
5000d KJL No. Platte. Nabr.
5000 WJRZ Newark N, N
KDCE Espanola, N. WEBR Euanola, N. M.
WCHN Norwich, N.Y. WCRCS Ahoskie, N.Y. WWIT Canton. N.C. WDAY Farpo. N.Dak. WREO ATHabula, Ohio KAKC Tulsa KOIN Portland, Ores WWSW Pittsburgh. Pa. WJMX Florence, S.C KHF Austin, Tex. KNOK Ft. Worth. WiVi christiansted. Tex. WYPR Danville, Va. WANV Waynesboro. Va. WWEM Spokane, Wash. WHA Madison, Wis. wigl Superior. Wis.

```
980-305.9
```

WKLF Clanton, Ala. WXLL Big Delta, Alasks KINS Eureka, Calif. KINS Eureka, Calif.
KEAP Fresno, Calif. KEAP Fresno, Calif.
KFWB Los Angeles. Callf. KGLN Glennwood Spr

$$
K
$$5000 d

1000
50001000 d
5000 d

WSUB Groton, Conn. WRC Washinoton, D.C.

Colo WOVH Gainesville, Fia. WBOP Pensacola, Fl

WHITES RADCO L(0)

Kc. Wave Length W.P.
KRNO San Bernardino. California 1000 d KSON San Diepo, Califí KSMA Santa Maria, Calif KRUE Susanvilie, Calif. KROO Colo. Sprgs.,
KDGO Durango, Colo. KSLV Monte Vista, Colo KCRT Trinidad. Colo. WWCO Waterbury, Conn. WBGC Chipley, rla. WLCO Eustis, Fla. WINK Fi. Myers, Fla. WMMB Melbourne, Fla. WBHB Fitzgerald, Ga. WDUN Gainesville, Ga WLAG LaGrande, Ga WBML Macon, Ga, WWNS Statesbor, Ga. WPAX Thomasvilie, Ga WTWA Thomson, Ga, KFLI Mount Hom, Idaho KFLI Mountain Home, ldaho KwIK Pccall, ida. KWIK Pocatello, Idaho WERW Chicago, Ill. WSBC Chicago, IIl. WTAX Springfield. III. WTAX Springfield, WHBU Anderson, Ind. KDEC Decorah, lowa KWLC Decorah, Jowa KICD Spencer, lowa KIUL Garden City, Kans. KAKE Wichita. Kans WINN Louisville k WFTM Maysville, Ky WPKE Pikeville, Ky WSFC Somerset, ky KASO Minden. La KANE New lberia. WCOU Lewiston, Maine WMKR Millinocket, Me WCEM Cambridge, Md. WJEJ Hagerstown, Md. WHAI Gireenfield, Mass. WDCB W. Yarmouth. Mass. WCBY Gadilas, Mich. WJPD Ishpeming, Mich. WJM Lanslng, Mich. WMFG Hibbing, Minn KPRM Park Rapids. Minn. WJDN St. Cloud. Minn. WGRM Greenwood Mis WGCM Gulfport, Miss. WMIS Natchez, Miss. KFMO Flat River, Mo. KWOS Jefferson City, Mo 1000 KODE Joplin, Mo. KBMY Billings, Mont. KLIZ Glasgow, Mont, KBLL Helena, Mont. KFOR Lincoln. Nebr.
KODY North Platte, Nebr. KELK Elko, Nev.
WFTN Franklin, N. H.
KAVE Carlsbad. N, Mex
KCLV Clovis, N. Mex.
WGBB Freeport. N. Y.
WGVA Geneva, N.Y.
WVOS Liberty, N. Y
WNBZ Saranac Lake. N.Y.
WSNY Schenectady, N.Y.
WPNF Brevard, N.C.
WIST Charlotte, N.C.
WCNC Elizabeth City, N.C. WJNC Jacksonvilla, N KRNC Raveigh, N.C. N.Dak WBBW Youngstown, Ohio WHIZ Zanesville, Ohio (vSO Ardmore, 0kla KBEK Elk City, Okla KBEL Idabel. OkIa, KOKL Okmulgee. Okla KFLY Corvallis, Oreg. KTIX Pendleton, Oreg. KPRB Redmond, Oreg.
KQEN Roseburg, Ore.
WRTA Altoona, Pa.
\qquad
\qquad

Kc. Wave Length WHUM Reading, Pa.

 WBAX Wilkes.Barre, Pa, WWON Woonsocket R. WKDK Newberry. S.C. WCXY Sumter, S. C.WBEJ Elizabethton, Tenn. WEKR Fayetteville, Tenn WBGR Knoxville, Jenn. WENK Union City, Tenn. KVLF Alpine, Tex. KEAN Brownwood. T KORA Bryan. Tex. KUCA Kilgore, Tex. KCikG Sonora, Tex. KXOX Sweetwater, Tex WSSV Petersburg. Va. WROV Roanoke, Va WTON Staunton, Va. KXLE Ellensburg. Wa
KGY Dlympia, Wash. WKOY Bluefield, W.Va WTIP Charleston, W.Va WONE Elkins. W.Va. WOMT Manitowoc. W WOBT Rhinelander, Wis. WJMC Rice Lake, Wis
KFBC Cheyenre. Wyo. KEVA Evanston. Wyo KASL Newcastle. Wyo KRAL Rawlins, Wyo KTHE Thermopolis. Wyo.

1250-239.9
WZOB Ft. Payne, Ala.
WETU Wetumpka. Ala. WEKU Wetumpka. Ala. KFAY Fayetteville, Ark. KALO Little Rock, Ar KTMS Santa Barbara, Calif
KDHI Twenty. Nine Palms. KDHI Jwenty-Nine Palms, KMSL Ukiah, Calif.
KICM Golden, Colo. WNER Live Oak, la. WDAE Jampa, Fla. WLYB Albany, Ga.
WYTH Madison, Ga. WIZZ Streator, Ill. WGL Ft. Wayne, Ind.
WRAY Princeton, Ind. KCFI Cedar Falls, lowa KFKU Lawrence, Kan WNEN Nicholasville, Ky WLCK Scottsville, Ky. Ky WGUY Bangor, Main WARE Ware, Mass WXOX Bay City, Mich KOTE Fergus Falls, Minn. WHNY MeComb, Miss. KFMO Flat River. M KBTC Houston. Mo WKBR Manchester, N. WMTR Morristown, N.J. WIPS Ticonderoga, N.
WFAG Farmville, $N . C$. WIKDX Hamlet. N, C. WBRM Marion. N.C. WCHO Washinoton Court House, Ohi WLEM Emporium, Pa. WPEL Montrose, Pa. WNOW York. Pa WTMA Charieston WCKM Winnsboro, S.C. WKBL Covington, Tenn. WNTT Tazewell, Tenn. KFTV Paris, Tex. KPAC Port Arthur, Jex KUKA San Antonio. Tex KTFO Seminole. Tex KANN Ogden, Utah KVEL Vernal, Utah WDVA Danville, Va. WYSR Franklin, Va. WEER Warrenton, Va. KWSC Pullman. Was KJW Seattle, Wash WEMP Milwaukee. Wis

1260-238.0

KPIN Casa Grande. Ariz. KCCB Corning, Ark.
KGIL San Fernando. Calif.

W.P.	ve Length	W		ve Lengt	
	WFIW fort Walton Beach,				
1000		0000			
1000	WAME M	5000d	KBA	Longview, Was	50
1000	WWPF Paiatka, Fia	1000			5000
250	WHAB Baxley, Ga.	$5000 d$	w	Mauston, Wis.	ded
1000	WBBK Blakely, Gia.	1000d	w	Superior.	d
1000	WTJH East Point. Ga.	5000 d			
1000 1000	KTEE Idaho Falls, Ida KWEI Weiser Ids.	5000 d	1280	234.2	
1000	WIBV Belleville, lif.	5000 d	WPID	Piedmont.	1000
1000	WFBM Indianapolis, Ind.	5000	WNP	Tuscaloosa	500
1000	KFGQ Boone, lowa	1000d	KHEP	Phoenix, Ariz.	Od
1000	KWHK Hutchinson, Kans.	1000	KNBY	Newport. Ark.	
1000	WAIL Baton Rouge, La.	1000 d	KOAG	Arroyo Grande, Cal.	1000
1000	WEZE Boston, Mass.	5000	KFOX	Lono Beach, Calif.	00
1000	WALM Albion, Mich.	1000		San Luis Obispo	
250	WJBL Holland, Mich.	5000	K	Stockton, Calif.	00
1000	KROX Crookston, Min	1000		De	5000
1000	KDUZ Hutchinson, Minn	1000 d	wsux	Seaf	
1000	W GVM Groenville, Miss.	5000 d		De	
1000	W NSL Laurel, Miss.	5000 d			
1000	WCSA Ripley, Miss.	500	walk	Jacksonvillo. Fla.	5000d
1000	KGBX Sprinafield,	00		Lake Wales. Fia	
1000	KIMB Kimball, Nebr.	1000 d		Sarasota,	0 d
1000	WBUD Jrenton, N .	5000		Macon. Ga	H0d
100	KVSF Santa F	1000		Auro	00d
1000 d	WBNR Beacon.	1000 d		Eva	00
1000	WNDR Syracuse			Nowton.	1000 d
10000		5000		Arkans	
1000d	WCOJ Ede	1000 d		Cumber	100
1000	WDOK Cleveland, Oh	5000		Oak Gr	
1000	WNXT Portsmouth, 0			teh	5000
1000	KWSH Wewoka.Seminole.			硣	drad
1000		1000	WWTC	Minneapolis, Minn	5000
250 1000	KMCM MeMinnville, 0 WWYN Erie, Pa.	1000		Moorhead, Minn.	00
1000	WPHB Philios burg.	5000 d		cli	500d
	w	1000	KCNi	Brok	1000 d
	WMUU Gre	5000 d	KTOO	Hendersor	5000d
	WJOJ Lake	1000d	K		5000 d
1000d	KWYR Winner, S.D	5000 d	w	ew	J00
5000d	WNOCH Chattanooga, Jenn.	1000 d	WROC	Roches	500
	WMCH Church Hil, T	1000d		Salis	1000
1000d	WDKN Dickson, Tenn.	$1000 d$	WYAL	Scatland Neck,	
1000	WCLC Jamestown, Tenn.	1000 d	WONW	Deflance, Ohlo	
50d	KSPL Diboll, ${ }^{\text {K }}$	1000d	WLMJ	Jackson, Ohio	1000d
000	KWFR	5000	KLCO	Poteau, Okla.	1000d
	KTUE Tulia,	1000 d		Eugene ${ }^{\text {a }}$	5000
	KTAE Taylor, Tex.	1000 d			5000
1000d	WCHV Charlottesville.	5000	WKST		
1000 d	WJJJ Christiansburg, Va	1000d	WCMN	Arecib	500
5000	KWIG Moses Lake. Was	1000d		Anders	5000
1000	w	500		M	5000d
1000d	WWIS Black		KBHB	cur	1000 d
500				Columbia, Ter	1000d
100	WEKZ Monroe, Wis.	0d	WDNT	Dayton, Jenn.	1000d
1000	WOCO Oconto, Wis.		KNIT	Abilene, Tex.	500 d
500d	KPOW Poweli. Wyo.	5000	KWHI	Brenham, Tex	1000d
5000	1270-236.1			Lonoview, Te	1000 d
500	1		KRAN	Morton, Tex.	00
500	WGSV Guntersville.	1000 d	KVWG	Pearsall, Tex.	500d
500 d	WSIM Prichard	1000d	KNAK	Salt Lake City.	
5000 d	KBYR Anchorage, Al	1000		Wytheville. Va.	1000d
1000	KDJ Holurook,	$1000 d$	KMAS	Shelton, Wash.	1000d
1000	KADL Pine Blu	5000 d	KUDY	Spokane, Wa	5000d
1000	KGOL Palm Des	500 d		R	5000
$1000 d$	KCOK Tulare, Calif.	5000 d	WVAR	Richwood, W.V	1000d
5000	WNOG Naples,	500 d	w	Neenah, Wis.	
00	WHIY Drlando, fla.	5000d			
500 d	WT NT Tallahassee, Fla	5000			
5000	WKRW Cartersville.	O0d	W	Jack	000
5000	WHYD Columbus, G	5000 d			000d
1000d	wJJC Commerce, Ga.	$1000 d$	WMLS	Sylacauga, Ala	loujd
500 d	KNDI Honolulu, Hawai	5000			
1000d	KTFI Twin Falls. Idah	5000	KCUB	Tucson. Ariz	1000
1000 d	W EIC Charleston, III.	1000d	KDMS	El Dorado,	
	WHBF Rock Isiand. II	5000	KUOA	Siloam Sprgs., Ark.	5000 ${ }^{\text {d }}$
	WCMR Eikhart, Ind.	5000	KHSL	Chico. Calif.	
1000d	W WCA Gary, Ind.	1000			5000d
1000d	WORX Madison, Ind.	1000d		ard	
5000	KSCB Liberal. Kans.	1000			5000
5000 d	WAIN Columbia, Ky.	1000d	KACL	Santa Barbara. Cal.	
5000	WFUL Fulton. Ky.	1000d		Hartford. Conn.	540 d
500 d	KVCL Winnfield, La	1000d	wTux	Wilmington, 0 el.	1000 d
1000 d	WSPR Springfield. M	5000	WTMC	Oeala, Fla.	500
500	WXYZ Detroit, Mich.	5000		Panama City	
5000	KWEB Rochester.	5000 d		Flo	500d
5000 10001	WVOM loka, Miss.	1000d	WIRK	W. Palm Bch	
10000	WLSM Louisvilde, Miss.	5000 d	WOEC	Americus, Ga.	1000 d
1000d	KUSN St. Joseph, Mo.	1000 d	WCHK	Canton, Ga.	1000 d
1000 d	KBUB Sparks, Nev.	10000		Savannah,	5000
5000 d	WTSN Dover, N.	5000	KSNN	Pocatello, Ida	1000d
5000	WDVL Vineland, N.J.	$500 d$		Peoria. 111.	5000
1000d	KRAC Alamogordo. N.Mex.	1000d	WNIR	New Aibany, In	5000
1000d	WHLD Niagara Falls, N.Y.	5000 d	KWNS	Pratt. Kansas	5000
5000	WDLA Walton, N.Y. I	$1000 d$	WCBL	Benton, Ky.	5000d
5000	WCGC Belmont, N. C.	1000	KJEF 」	lennings, La	1000d
5000	WMPM Smithfield, N.C.	5000 d	WHGR	Hounhton Lak	. 5000
	KBOM Mandan. N.Oak.	1000	WNIL	Niles, Mich.	500d
	WILE Cambridge. Ohio	1000d	W01B	Saline, Mich.	500 d
	KWPR Claremore, okla.	500 d	KBMO	Benson, Minn.	500d
1000d	KAJO Grants Pass, Ores.	5000 d	WBLE	Batesville, Miss	1000d
1000 d	WLBR Lebanon, Pa.	5000	KALM	Thayer, Mo.	1000 d
500 d	WBHC Hampton, S.C.	1000 d	KGVo	Missoula, Mo	5000
5000	KNWC Sioux Falls. S. Dak.	1000	KOIL	Omaha, Neb	5000
000	WLIK Newport, Jenn.	5000d		Keene, N.	5000
5000 d	KloX Bay City,	1000	KSA	Socorro, N.M	1000 d
5000d	KHEM Bio Spring, Jex.	1000d	WGLI	Babylon, N. Y.	5000
1000 d	KEPS Eagle Pass. Tex.	1000 d	WNBF	Binghamton, N.Y.	5000
500	KFIZ Fort Worth, Tex. WTIO Newport News,	5000	WHKY	Hlekory, N.C. Sanford,	5000

MHETTE'S		Tc.		ve Length	W.P.	Kc.	L	W.P.
		BZ Vinaland, N.J. P Binghamton,	0	CM Brazil, Ind.	d		L Demopolis. Al	00d
		WMNS olean, N.	00	WKJG Ft. Wayıe, I KCIM Carroll. Jowa	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { WF } \\ & \mathbf{W} J \end{aligned}$	Ft. Payne, Ala. Homewood, Ala.	1000 1000
		WCHL Chave	000d	KCII Washindton, low	500d		Opelika, Ala.	000
		KEYZ Williston, N.D.	5000	KUDL Fairway	5000	KSEW	Sitka. Al	000 250
		WSAl Cincin	5000	WMTA Ce	500 d		Clif	250
		WWOW Conneau	500	WWKY Winchester	1000 d	K	-	250
		Kubk Hillsbore.	$1004 d$	W YNK Baton Roud	500d		hoenix, Ariz.	1000
Kc. Wave Length	. P.		500	WKTJ Far	1000 d	KTUC	Tucson, Ariz.	250
K. Wave Length		WPPA Pottsv WELP Easicy	${ }_{5000} 1404$	WTTH Port MtI WPLB Greenvill	1000 1000	kVO		250
350-22		W LCM Lancas	1000 d	KLIZ Brainerd, Minn.	5000		E	
		WBLC Lenoir City, Tenn.		KAGE Winona, Minn.	1000		wynne	
WELB E	1000d	WNAH Nasliville. Tenn,	1000 d	WOLT Indianola, Miss.	500 d	KPAT	Berkeley, Cal	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$
WGAD Gadsden, A	5000 d	KRAY Amarillo, Tex.	500d	KWK St. Lou	5000	KREO	Indio. Lalis.	250
KCKD Bakersfleld, Cal	1004 d	KACT Andrews. Tex.	000d	KUVR Holdredg	500		Redding, Calif.	250
SRo Santa Ros		KWBA Baytown, Tex.	1030	WBBX Portsmouth, N.H	1000	KSLY	San Luis obispo	. 250
KKAM Pueblo Colo.	5000	KRYS Corpas Christi. Tex.	1000	WAWZ Zarephath, N.J.			Santa Paula.	250
WNLK Norwaik, Conn.	$\begin{aligned} & 5000 \\ & 1000 \end{aligned}$	KXOL Ft, Worth, Tex.	54040	W8NX	500 d 5000	KHOE	Truckee, Calif.	1000
WINY Putnam, Conn.	$1000{ }^{\text {d }}$	WBOB Galax, Va,	$1000 \mathrm{~d}$ $5000 \mathrm{~d}$	WLOS Asheville	5000	KUNG	Uisalia, Cal	1000
EZY Cocoa, Fla.	1000	Gra	$\begin{aligned} & 5000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WTOB Winston-Salem, N.C	50	KRLN	Canon city.	250
WDCF Dade City, Fia.	1000d	KMOTacoma, Was	5060	WWIZ Lorain, ohio	500 d	KDTA	Delta, Culo.	250
WCAI Ft, Myers, Fla.	1000 d	WHJC Matawan,	$\begin{array}{r} 5000 \\ 1000 \mathrm{~d} \end{array}$	WPKO Waverly, Ohio	1000d	KFTM	Ft, Morgan. C	250
BSG Blackshear, Ga.	500 d	WMOV Ravenswood, W.Va.	1000 d	KSWO Lawton, Okla.	1000	KBZZ	La Junta,	000
RWH Cleveland, Ga.	1000d	WBAY Green Bay, Wis.	5000	KMUS Muskogee, Okla.	1000		Stamford	000
RPB Warner Robins, RLC Lewiston, Ida..	a. 5000 d	WISV Viro	1000	KBCH Ocean Lake. Oren KSRV Ontario, Oreg.	1000 d		Ft maudo,	1000
$\begin{aligned} & \text { wiston, Ida } \\ & \text { Clarkston } \end{aligned}$		WMNE Menomonie,	1040 d	WACB Kittannin	000		Ft. Lauderdale, FI	
CL Peoria, III.		KVRS Rock Springs, Wyo.	1000	WMLP Milton,	1000 d			100
JBD Salem, 111.	1000 d	1370-218.8		WAYZ Waynesboro. Pa.	1000 d			
10 C Kokomo, Ind.	5000	1370-218.8		WNRI Woonsocket. R.I.	1000d	WRHC	Jacksonville, Fla.	250
KRNT Des Moines,	5000	WBYE Calera. Al	1000d	WAGS Bishopville. S.C.	$1000 \pm$	WPRY	Perry Fla,	000
MAN Manhattan, Kan	0d	KHEB Meber Sprinps, Ark.	500	WGUS N. August	1000d	w		
WLOU Louisville, Ky.	5000 d	KTPA Preseott, Ark.	500 d	KOTA Rapid City, S. bak	5000	WZRH	Zephyr Hills,	250
WSMB New Orieans, La,	5000	KREL Corona, Cal	1000	KFCB Redffeld. S. ${ }^{\text {W }}$	500 d	WCQS	Alma,	1000
WHMI Howell, Mich.	500	KQCY Quincy, Cali	500d	WYSH Clinton, Tenn	1000d	WSGC	Elberto	1000
KDIO Ortonville	000d	KEEN San Jose, Cali	5000	WGMM Millington, T	500 d	WN	Nacon	1000
WCMP Pine City, Min	000	KGEN Tulare, Calif.	1000 d	KJET Beaumont, Tex.	1000	WMGA	M Moul	000
WKCU Corinth, Miss.	1000	WKMK Blountstown, F	500 d	KBWD Brownwood.	1000	WCOH	Newn	1000
WKOZ Kosciusko, M	5000d	WWKE Ocala, Fia.	5000d	KCRM Crane, T	1000d	WGSA	Savannah, Ga.	1000
KCHR Charleston,	1000d	WCOA Pellsacola,	5000	KTSM El Paso, Tex.	5000	KA	Jerome, Idalio	250
KBRX 0'Nell!	1000 d	WAXE Vero Beach	1000d	KMUL Muleshoe, Tex.	1000d	KRPL	Moscow. Idaho	250
WLNH Laconi	5000d	WLOP Jesup, Ga.	5000	KBOP Pleasanton. Tex	$1000 d$		St. An	
WHWH Prinee	5000	WFDR Manchester,	1000d	WSYB Rutiand, Vt.	5000	KSP	Sanduoint. Idaho	000
KABQ Albuqu	5000	WLOV Washington,	1000d	WMBG Richmiond,	5000	wows	Champaign, III.	000
CBA Cornin	1000d	WPRC Lincoln, III.	1000d	KRKO Everett, Wash.	5000	WGI	Galesburg, ill	
RNY Rome,	500 d	WTTS Bloominaton,	5000	KPEG Spokane	5000d	WROZ	Evansville, In	1000
BMS Black	C	WLTH Gary	1000 d	WMTD Hinton. W.V	1000d		Mar	1000
	500d	K	5000	WBEL Beloit, Wis.	5000	KCOG	Cent	500
WHIP Moor	1000	KGNO Dodge City.	5000			KVFO	Fort Dodg	1000
WLLY Wilson,	1000d	KALN lola, Kans.	500 d	1390-215.		KVOE	Emporia. Kans.	1000
BMR Bismarck, N.	5000	WABD Ft. Camabell,	500 d	WHMA Annist				1000
SLR Akron, O	500	WGOH Grayson, Ky.	5000 d	KDQN DeQuee	500 d	WCYN	Cynthiana,	250
SM Celina,		WTKY Tompkinsville, Ky.	1000d	KAMD Rogers		WIEL	Elizabethtow	000
WCHI Chillicothe. Ohi	1000d	KAPB Marksville, L	1000d	KGER Lo	5040	WFTG	London. Ky.	250
KRHD Duncan, okla	250	WDEA Elisworth,	5000	KCEY Turlock, Cali	5000	WFPR	Hammond, La.	1000
Ta Tah	1000d	WM HI Braddocks	500d	KFML Denver, Colo	5000d	KAOK	Lake Charles, L	1000
KRVC Ashland,	1000 d	WKIK Leonardtown, Md.	1000 d	WAVP Avon Park. Fia,		WRDO	Augusta. Maine	000d
WORK York	5000	WGMN Grand Haven, Mi	500 d	WUWU Gainsville, Fla,	5000 d		Biddeford, Maine	1000
WWBR Windber	1000d	KSUM Fairmont	1000	w			altimore, Md.	1000
WDAR Darlingto	1000d	WMKT S. St. Paul,	00d	w	5000	WALE	1 Riv	1000
WGSW Greenwood,	1000d	WMGO Canton, Miss.	1000 d	WFIW Fair	1000	WLLH	Lowell.	1000
WRKM Carthage,	1000d	KWRT Boonville, Mo,	1000d		1000 d	WHMP	Northampton, Mass.	1000
KCAR Clarksvilte, T	500d	KCRV Caruthersville, Mo.	1000 d	KCLN Clinton, lowa	co00d	WKFR	Battle Creek, Mich.	1000
KTXJ Jasper. Tex.	1000d	KXLF Butte, Mont.	5000	KCBC Des Moines. Io		WJLB	Detroit. Mich.	1000d
KCOR San Antonio. Tex.	5000	KAWL York. Ne	d	KNCK Concordia, Kan	500 J		Houghton. Mic	50
WBLT Bedfo	1000d	WFEA Manchest	5000 d	WANY Albany, Ky.	1000 d	N	Munising, Mich	250
WFLS Fredericksburg,	1000d	WELV Ellenville,	500	WKIC Hazard, Ky.	5000d	WSAM	Saginaw, Mich.	00
WNVA Norton, Va.	5000 d	WALK Patchogue, N.Y.	500 d	KFRA Franklin. La.	500 d	WSJM	St. Joseph. Mich	1000
WAVY Portsmouth, Va.	5000	WSAY Rocliester	d	WEGP Presque isle.	5000 d	WTCM	Traverse City,	00
WPDR Portalig, Wis.	5000 d	WLTC Gaston	5000 d	KJPW Waynesville, M	1000 d	KEYL	Long Prairie, Mi	1000
1360-220.4		WTAB Tabor	0d	WCAT Orange, Mass,	1000d	KMH	Marshall,	
		K		WPLM Plymouth, Ma	5000	WMIN	Mals.-St. Paul, Min	1000
WWWB Jasp		WSPD Toledo Ohio	5000	WCER Charlotte. Mich	5000d	WHLB	Virginia, Minn,	1000
WLIQ Mobile, Ala	5000 d	KVYL Holdenvilte, Ok	500 d	KAOH Duluth, Minn.	500	WBIP	Booneville, Miss	1000
WMFC Monroeville, A	1000 d	KAST Astoria, Oreg.	1000	KRFO Owatonna, Min	500 d	WNAG	Grenada, Miss.	1000
WELR Roanoke. Ala.	1000d	WOTR Corry, Pa.	000	WROA Gulfport, Miss.	1000d	WFOR	Hattieshurg, Miss.	1000
KRUX Glenda!	5000		1000 d	WQIC Meridian. Miss.	5000d	WJQS J	Jackson. Miss.	1000
KLYR Clarksville, Ar	500 d	WKMC Roaring Spros.	1000d	KJPW Waynesvilie, Mo	1000d	WMBC	Macon. Miss.	1000
KFFA Hedena, Ark.	1000	WIVV Vieques, P.R.	100	KENN Farmington. N. Mex.	5000	KFRU	Columbia. Mo.	1000
KFiV Modesto. Cal.	5000	WKFD Wickiord, R	500 d	KHOB Hobbs, N. M	5000 d	KJCF F		1000
KGB San Diego. C	10000 5000	WDXE Lawrenceburg. Ten	1000 d	WRIV Riv	5000 $1000 d$	KTTS S	Sikringtield, Mo.	1000 1000
KDEY Boulder, Col	500 d	WRGS Rogersville, Tenn.	1000d	WFBL Syracıse,	5000	KDRG	Deer Louge, Mon	250
WDRC Hartford, Con	5000	KOKE Austin. Tex.	1000d	WEED Rocky Mount. N.C.	5000	KXCiN	Giendive. Mont	250
WOBS Jacksonville, Fla.	5000 d	KFRO Longview.	100	WADA Shelby, N.C.	1000	KARR	Great Falls. Mo	1000
WKAT Miami Beach, Fla,	5000	KPOS Post, Tex.	1000d	WJRM Troy, N.C	500d	KCOW	Alliance, Nebr	1000
WINT Winter Haven. Fla,	1000d	KSOP Salt Lake City. Uta	000d	KLPM Minot, N.	5000	KLIN L	Lincoln, Nebl.	1000
WAZA Bainbridge, Ga.	1000 d	WBTN Benninaton, Vi.	1000d	WOHP Bellefontaine, Ohio	500d	KBM1	Henderson. Ne	250
WLAW Lawrenceville,	1000	WHEE Martinsville, Va.	5000 d	WMPO Middteport-		KWNA	Winnemueca, ${ }^{\text {der }}$	1000
WMAC Metter,	500	WJWS South Hill.	5000 d	Pameroy. 0	5000d	WBAL	Berlin. N.H.	250
WIYN Rome, Ga,	500 d	KPOR Quincy. Was	1000	WFMJ Youngstown, Ohio	5000	WTS	Hanover. N.H.	1000
WVBMC DeKalh, IU.	1000d	WEIF Moundsville, W. V	1000	KCRC Enid. okla.	1000	WTRC	Littreton. N.H.	25
WVMC Mt, Carmeli, III.	500 d	WCCN Neillsvilie, Wis.	5000 d	KSLM Salem, Oree	5000	KTRC	Santa Fe. N	10
WGFA Watseka, III.	1000 d	KVWO Cheyenne, Wyo.	1000	W RSC State College,	5000			
KRCB Council Bluffs. lowa		1380-217.3		WISA Isabella, P.R.	1000	KTNM T	Tucumcari. N.M.	1000
KXGI Ft. Madison. lowa	1000d	WRAB Arab, Ala.	1000d	WHPB Belton, S.C	1000 d	WOND P	Pleasantville, N.J.	1000
KSCJ Sioux City, lowa	5000	WGYV Greenville. Al	1000d		5000	WABY	Albany. N. Y.	1000
KBTO EI Dorado, Kans.	5000	KDXE N. Little Rock. Ark.	1000 d	KJAM Madison, S. D.	5000 d	WYSL B	Butfalo, N.Y	1000
WFLW Monticello. Ky.	1000d	KBVM Lancaster, Calif.	1000 d	WTJS Jackson, Tenn.	5000	WSLB	Odenisbura. N.Y	000
KDXI Mansfleld. La,	1000 d	KGMS Sacramento. Calif.	1000	KULP EI Canipo. Tex.	500c	WBMA	Be	250
KV1M New theria, La.	1000d	KSBW Salinas, Calif.	5000	KBEC Waxahachie, Tex	500 d	WGBE	Greenstoro, N.C.	1000
KTLD Tallulah, La.	500 d	KFLJ Walsenburg, Colo	1000d	WEAM A	1000 5000	WSIC St	Statesvilie. N.C	000
WEBB Baltimore, Md	5000 d	WAMS Wilmington, Del.	000	WWOD Aringloli, Va.	5000			
WLYN Lynn, Mass.	1000 d	WL1Z Lake Worth, Fla	500 d		5000			1000
WKYO Caro, Mich. WKMI Kalamazoo, Mich.	500d	WQxQ Ormond Bch., Fla.	1000d	WKLP Keyser, W.Va.	1000	WHCC W	Waynesville. N.C.	1000
WKMI Kalamazoo, Mich.	5000	WLCY St, Petersburg, Fla.	5000	KBBO Yakima, Wash.	1000	WCNF W	Weldon. N,C,	1000d
KLRS Mountain Grove, Mo, KWRV MeCook, Nehr.	1000 d	WAOK Atlanta, Ga.	5000	-214.2		KEYJ Ja	amestown, N. Dak.	1000
KWRV McCook, Nebr.	1000 d	WSIZ Oeilla, Ga.	5000 d	1400-214.2		WMAN	Mansfleld, Ohio	000d
WNNJ Newton, N.J.	1000d	KPOI Honolulu, Hawail	5000	WMSL Decatur, Ala.	1000	WPAY P	Portsmouth, Ohio	100

WHITES

Kc. Wave Length
KYNT Yankton, S. D WMOC Chattanooga, Tenn WDSG Dyersburg, Tenn. WSMG Greeneville, Tenn WLAF LaFollette. Tenn. WGNS Murireesboro. Tenn KAYC Beaumont, Tex KCT Carrizo Spros. KCTB Gonzales. Tex KCYL Lampasas. Tex. KMHT Marshall. Tex. KAMY McCamey, Tex. KNET Palestitre, Tex. KSNY Snyder, Tox. KURA Moab, Utah KEYY Provo, Utah KDXU St. George, Utah WNO Barre. Vi.
WTSA Brattleboro. Vt. WENZ HOM Royal, Va. WREL Lexington. Va. WMVA Martinsville, Va. KBKW Aberdeen. Wash KCLX Colfax, Wash. KANP Port Angeles, Wash. KAYE Puyallup, Wash. WHAR Parkershurg. W. Va. WDLB Marshfield. Wis. WPFP Park Falls. Wis. WPFP Park Falls. Wis. $\quad 1000$
WRCO Richland Center, Wis. 1000 KB8S Buttalo, Wyo.
KVOW Riverton. Wyo.

1460-205.4

WFMH Cullnian, Ala. WPNX Phenix City. Ala KZOT Marianna, A KCCL Paris, Ark
KTYM Inglewood, Calif. KDON Salinas. Calif. KVRE Santa Rosa, Calif. WSN Colo. Sprgs., Colo. WBAR Bartow, Fla. WZEP DeFuniak Springs, Florida WMBR Jacksonville
WDYX Buford, Ga. WPNX Columbus. Ga. WROY Carmi, 111. WIXN Dixon, 111. WRTL Rantoul. II. WKAM Goshen. Ind. WOCH North Vernon. Ind. KCRB Chanute, Kans KRYK Chanute, Kans. WXOK Baton Rouge. La KBSF Springhill. La. WEMD Easton, Md. WBET Brockton, Mass. WBRN Big Rapids, Mich. WPON Pontiat, Mich. KDWA Hastings. Minn. KDMA Montevideo, Minn. WELZ Belzoni, Miss. WACY Moss Point, Miss. KADY St. Charles, Mo KRNY Kearney, Nebr. WJJZ Las Hegas, Nev. WJJZ Mt. Holly, N.J. WOKO Albany, N. Y. WVOX New Rochelle, N.Y. WHEC Rochester. N.Y WRKB Kannapolis, N.
WBNS Columbus, Ohio WPVL Painesvilie, Ohio KROW Dallas, Oreg. WMBA Anbridge, Pa.
WCMB Harrisburg, Pa WFBA San Sebastian, P.R. WDOG Allendale, S. C. WBCU Union. S.C. WEEN Jackson, Tenn. KBRZ Freeport, Tex. KLLL Lubbock. Tex. WACO Waco. Tex. WPRW Manassas. Va. WRAD Radford. Va. W LPM Suffolk, Va. KYAC Kirkiand, Wash. KBUC Yakima. Wash. WRAC Buckhannon.
W.P.

1000 1000 1000
1000 1000
250 250
1000 1000 1000 $\begin{array}{r}1000 \\ 250 \\ \hline\end{array}$ 250
250 250
250 1000 1000 250
250 250
1000 1000 1000 250 1000
1000
Va. 250
\square 1000 250
1000 1000
1000 1000
250 250
1000

5000 5000
500
500 500
5004
5000 1000d 5000 1000 d
1000
10004$1000 d$
$250 d$250 d
10001000 d
50005000
1000 d50001000 d
5000
1000 d
1000
000 d
10001000 d1000d5000d
5000 d
1000
5000
500 d5000 d
5000000d
000d 000d
500 d
500 d
500 d
5000
5000
500 d
5000 d
5000 d
500
500
5001
5000500
1000
5000
1000
5000 d
1000 d $500 d$
000 d
1000
500 d
5000
5000d
$5000 d$
5000 d50000
5000 d
500 d
5000

Kc. Wave Length

WTMB Tomah, Wis.

1470-204.0
WBLO Evergreen, Ala. KZNG Hot Springs. Ark. KUTY Palmdale, Cal KXOA Sacramento, Calif.
W.P. WMMW Meriden. Conn. WRBD Pompano Beach, Fla
WCWR Tarpon Springs, Fla. WAAG Adel, Ga. WDOL Athens, Ga WCLA Claxton. Ga. WRGP Rome, Ga. WMBD Peoria. II WHUT Anderson, ind. KTRI Sioux City, Jowa KARE Atchison Kan KLIB Liberal, Kans. WSAC Fort Knox KTAC Fort Knox, Ky. KPLC Lake Charies, La. WLAM Lewiston, Maine WJDY Salisbury, Md. WSRO Marlberough Md. WNBP Newburyport, Mass. WKMF FJint, Mich. WKLZ Kalamazoo. Mi WCHJ Anoka, Minn. WNAU New Albany, Miss KGHM Brookfield, Mo. KTCB Malden, Mo. WTKO Ithaca, N.Y WPDM Potsdan, N. Y WBIG Greensboro, N.C.
WPNC Plymouth N. WTOE Spruce Pine. WOHO Toledo, Ohio KVLH Pauls Valley, Okla. KRAF KRAF Reedsport, Oreg.
WSAN Allentown, Pa WFAR Farrell, Pa. WWAR Farrell, Pa. WWML Portage, Pa.
WQXL Columbia, S. WGOO Geargetown, WVOL Berry Hill. KRBC Abilene, Tex.
KDHN Dimmit KWRD Henderson T KWNY San Marcos. Tex KELA Centralia.

Chehalis. Wash.
KSEM Moses Lake. WashKAPS Mount Vernon. Wash 5000WWHY Huntington, W, Va 5000 dWBZE Wheeling, W.Va. 500 d
WBKV West Bend, W
KTWO Casper, Wyo
1480—202.6KCNY San Marcos. Tex 10
1000 d WWARI Abbeville. Ala.WBTS Bridgeport. Ala.WABB Mobile, Ala.KHAB Mobile, Ala.KGLU Safford. Ariz.KWUN Concord. Calif.KYOS Merced. Calif.KWIZ Santa Ana, Calita.KSEE Santa Maria, Calif.KCMS Manitou Springs, Colo.S. C.
enn.C. $\quad 1$
$5000 d$
$1000 d$5000 KG1000 d
1000
250 d
500 d$500 d$
5000 d
5000WAPG Aindsor, Conn.WAPG Arcadia. Fla.
WVNE Panama Beach, Fla. WYZE Atlanta, Ga. FlWRDW Augusta, Ga.WGSB Genevsta, GaWJBM Jerseyville. Ill.WTHI Terre Haute, Ind.KLEE Warsaw. Ind.CLEE Ottumwa, lowaKBEA Mission, Kan.KLEO Wichita, Kans.WKOA Hopkinsville. Ky.WNKY Neon, Ky.WTLO Somerset, KyKCKW Jena. La.KANV Jonasville. La.KJOE Shreveport. La.WSAR Fall River, Mass
1000dc. Wave LengthW.P. \mid Kc. Wave Length
w.W.P.
250

KDMO Carthape, Missd 250
1000 $\begin{array}{lll}500 d & \text { KTTR Rolla, Mo. } & 1000 \\ 5000 & \text { KDRO Sedalia, Mo. } & 1000\end{array}$ $\begin{array}{lll}\text { KDRO Sedalia, Mo. } & 1000 \\ \text { KBON Omaha, Nebr. } & 1000\end{array}$ WEMJ Laconia, N.H.
WLDB Atlantie City, N. J.
KRSN Los Alamos. N. 1000
1000
1000 $\begin{array}{ll}\text { KRSN Los Alamos, N.Mex. } & 1000 \\ \text { KRIN Raton. N.Mex. } & 1000 \\ \text { WCSS Amsterdam, N.Y. } & 1000\end{array}$ 1000 $\begin{array}{ll}\text { WBTA Batavia, N.Y. } & 250 \\ \text { WKNY Kingston, N.Y. } & 1000\end{array}$ WKNY Kingston, N.Y. $\quad 1000$ WICY Malone, N.Y.
WDLC Port Jervis, N. Y. W
W
W
W
W N.
Y.
N.C.
N.C. WRNB Now Bern. N.C.
WRMT Rocky Mount, N. C
WSTP Salisbury, N.C.
\qquad WSVM Valdese, N.C.
WHSL Wilmington. N, C.

enter. KOVC Valley City, N. Dak.

WBEX Chillicothe, Ohio WOHI E. Llverpool. Ohio. W 1000000d
$1000 d$
500 WRLD Lentur, Ala.
500d

$500 d$
0000
:---
1000 d
1000 d

KOLR Sterling, Colo.WGCH Greenwich. ConConn.WTRL Bradenton, FIaWIRA Ft Pi, Fla.WCOF Immokalie. FlaWMBM Miami Beaeh, Fla.WSRA Milton. Fla.WPXE Stark. Fla.WPXE Starke, Fla.
WTSB Vero Beach, FlaWSIR Winter Haven Fla,$\begin{array}{r}250 \\ \hline 500\end{array}$
KPUB Pueblo. Colo.
WSOR Windsor, Conn.WMOG Brunswick, Ga.a.

MHATESS			Gave Length			Wave Length		Kc.				
		WRGM Richmond. Va. KLFF Mead, Wash. KETO Seattio, Wash. WIXK New Richmond. Wis. WSWW Platteville, Wis. WTRW Two Rivers, Wis. WAWA West Allis, Wis.						Kc.		W.P.		
		5000d		W Harvard,	500 d	WIDU	Fayetteville. N.C.	1000 000 d				
		5000 d	WARU	U Linton, Ind	500 d 1000 d	WHVL	L Hendersonville,	1000 d 1000 d				
		5000 d 5000		Alpona, lowa	$\begin{aligned} & 1000 \mathrm{~d} \\ & 5000 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \text { WFRC } \\ & \text { WKSE } \end{aligned}$	C Reidsville, N.C.	1000				
		$\begin{array}{r} 5000 \\ \mathbf{1 0 0 0 d} \end{array}$		Cedar Rapids,	5000	KD	K ${ }^{\text {ca }}$	1000d				
				Ft	500	WAQI	1 Ashtabula,	500d				
Kc. Wave Length W.P.				1600-187.5			W	Gre	500 d		Springfield, Oh	1000 d
wzum carnenie W.P.				WEUP Huntsville, Ala. WAPX Montgomery.				Fer	1000 d	KUSH	Cushing, Okla.	500d
WZUM Carnegie, Pa. 1000				5000 d	KL	Golden Meadow, La.	1000 d	KASH	Eugene, Oreg.	5000		
WCBG Chambersburg, Pa.	5000			KVIO Cottonwood, Ariz. KXEW Tucson Ariz		10000	WIN	Roekville, M	500 d 1000		St. Helens, Ore	1000d
WXRE Chester, Pa.	1000			1000	WBOS	Brookline, Mas	5000	WHRY	Y Alentown, Pa.	5004		
WYNG War	1000	KGKO Benton, Ark.				1000 d	WTYM	East Longmeadow	5000		Elizabethtown,	500d
WABV Abbev	1000d	$\begin{aligned} & \text { KGST } \\ & \text { KWOW } \end{aligned}$	Fresno, Cal.	5000 d			5000d	WFis	Fountain Inn, S.C.	1000 d		
WACA Camden,	1000 d	KHER Santa Maria, Callt.		5000		Ann Arbor, M	5000	WFNL	No. Augusta, S.	O0d		
KCCR Pierre.		KUBA Yuba City, Calif.		500 d	W	Muskegon, Mich	5000	WHBT	Harriman, Tenn.	50004		
WSHC Collierville, Ten	500 d			5000		Columb	1000d	WKBJ	Milan, Tenn.	1000d		
WOBL Jonesboro, Ten	5000 d	KLAK Lakewood, Colo. WKEN Dover, Del.		500 d			5000	KBEB	Borger. Tex.	500d		
KGAS Carth	1000 d	WKTX Atlantie Beach, Fla.		1000 d	KTTN	renton.	500 d	KWEL	Midland. Tex	1000		
KERC Eas	500d	WKWF Key West, Fla,		500	KN	Nebraska	500 d	KCFH	Сиего. Тех	1000d		
KINT EI Paso, Tex	1000 d	WHEW		1000	WWRL	New	500 d	KYAL	McKinney, Tex	000d		
KY0K Houston, Tex.	5000	WOKE		500 d	WWCR	Ne	5000	KOGT	Orange. Tex	1000		
KCBD Lubbock.	1000	WGKA Atlanta, Ga.		1000d		Ha	1000 d	KBE	Centerville, Utah	1000 d		
KBUS Mexia, Tex.	500 d	WNGA WRBN	Ga. Nashvilfe, Ga. Warner Robins, Ga.	1000 d			500	WSJT	Chesapeake, Va	1000d		
KTOD Sinton, Tex.							500 d	WHL	Wheeling, W.V.	5000d		
							5000	WCWC	Ripon, Wis.	5000		

Canadian AM Stations by Frequency

Canadian stations listed alphabetically by call letters within groups. Abbreviations: Kc., frequency in kilocycles; W.P., power in watts; Kc. Wave Length W.P.|Kc Wave Length Wers.

540-555.5

CBK Regina, Sask.
CBT Grand Falls, Nifd.
550-545.1
CFBR Sudbury, Ont.
CFNB Fredericton, N.B. CHLN Trois-Rivières, $\quad 50.000$ CKPG Prince George, B.C $\begin{array}{r}5,000 \mathrm{n} \\ \hline\end{array}$
560-525.4
CFOS Owen Sound, Ont.
CHCM Marystown, Nifd.
CHTK Prince Rupert, B.C. 500 n
CJKL Kirkland Lake, Ont $\quad 250 \mathrm{n}$
CKCN Sept-lles, Que. $10,000 \mathrm{~d}$
CKNL Fort St. John, B.C. $\begin{array}{r}5,000 \mathrm{n} \\ 1,000\end{array}$
570-526.0
CFCB Corner Brook, Nfld.
CJEM Edmundston, N.B.
CKCQ Quesnel, B.C.
CKEK Granbrook, B.C.
CFWH Whitehorse, Y.T
580-516.9
CFRA Ottawa, Ont.
CHLC Hauterive, Que.
CJFX Antigenish, N. S. KKPR Port Arthur, Ont.

Edmonton, Alta
KKWW Windsor, ont
1,000
5.000 d
1.000 n
1.000
1.000
$50,000 \mathrm{~d}$
$10,000 \mathrm{n}$
$5,00 \mathrm{~d}$
$2,500 \mathrm{n}$
10,000
1,000
$5,000 \mathrm{~d}$
1.000 n
10.000
500
C. 1,000
50,000

590-508.2

CFAR Flin Fion, Man. CKEY Toronto, Ónt.
CKRS Jonquiere, Que. CFTK Terrace, B. C.
VOCM St. John's, Nild

600-499.7
CFCF Montreal, Que. CFCH Callander, Ont
CFQC Saskatoon, Sask.
CJOR Vancouver, B.C.
CKCL Truro, N.S.
610-491.7
CHNC New Carlisle, Que. $10,000 \mathrm{~d}$
CHTM Thompson, Man
CJAT Trail, B.C.
CKML Mont Laurier, P.Q. 1,000
-

1,000

C

5.000
10.000 d
$5,000 \mathrm{n}$
5,000
10,000 1,000

630-475.9
CFCO Chatham, Ont. $\quad 10$,
CFCY Charlottetown, P. E.
CHED

CHED Edmonton, Alta.	$\left.\begin{array}{r}10,000 \\ 10,000 \mathrm{~d} \\ \hline\end{array}\right]$
.000 n	

$\begin{array}{lll}\text { CJET Smiths Falls, Ont. } & \mathbf{1 0 , 0 0 0} \\ \text { CKAR Huntsville, Ont. } & 1,000 \\ \text { CKOV Kin }\end{array}$
CKOV Kelowna, B.C. $\quad 1,000$
CKRC Wi
$640-468.5$
CBN St. John's, Nfld. $\quad 10,000$
680-440.9
CHFA Edmonton, Alta. CHLO St. Thomas, Ont CJCN Grand Falls, Nfld. CJOB Winnjpeg, Man

CKGB Timmins, Ont.
$690-434.5$
CBF Montreal, Que. CBU Vancouver, B.C.
$710-422.3$
CJSP Leamington, ont. CFRG Gravelbourg, Sask. CKVM Ville-Marie, Que.
CJOX Grand Bank, Nfld.
$730-410.7$
CJNR Blind River, Ont. CKAC Montreal, Que. CKDM Dauphin, Man.
CKLG North Vancouver, B.

U. S. Commercial Television Stations by
J. S. stations listed alphabetically by cities within state groups. Territories and possessions follow states. Chan., channel; C.L., call letters.

U. S. Educational Television Stations by States

Includes Non-Commercial Staiions. U. S. Stations listed alphabetically by cities in state groups. Territories and possessions follow states,

Location C.L. Chan. PENNSYLYANIA Allentown-Bethlehem		C.L. Chan. TENNESSEE				Location C.L. Chan. Tacoma KPEC.TV 56 Yakima KYVE.TV 62 WISCONSIN	
						Madison Milwaukee	
arleston	WITV				WCVE.tV 23		
SOUTH DAKOTA million KUSD-TV		$\left\|\begin{array}{ll} & \text { UTAH } \\ \text { KUSU-TV } 12 \end{array}\right\|$		GTON			ICO

Canadian Television Stations by Cities

Canadian stations listed alphabetically by cities. Abbreviations: Chan., channel; C.L., call letters.

World-Wide Short-Wave Stations

The shortwave section of White's Radio Log is an exclusive feature of Radio-TV Experimenter magazine. This is a listing of the most active and most often reported stations, as compiled from reader reports sent in to us, from published schedules of the stations listed, and from actual monitoring at the official Radio-TV ExperiMENTER monitoring station, DX Central.

We invite our readers to send in their loggings for inclusion in these listings. Be sure to include the following information for each station reported: approximate frequency, callsign and/or station name, and time monitored in Greenwich Mean Time (24 hour clock). Address your reports to: DX Central, White's Radio Log, Radio-TV Experimenter, 505 Park Avenue, New York, N.Y. 10022, U.S.A

We are indebted to the following DX reporters for making this listing possible.

Mark Colan, Peoria, Ill.
J. Horstmann, Latham, N. Y.

Carl Scarwath, Avenel. N. J.
John A. Heyman, South Orange, N. J.
Steve Cohn, Worcester, Mass.
Paul Johnson, Monmouth, Ill.
Leonard E. Smilh, Shadyside, Ohio
George Spront, Reading, Pa.
Mike Thompson, Vancouver, B. C.
Jerry Stuart, Lawton, Okla.
P. Grenier, Azusa, Calif.

Eugene Purdum, Jr., Westminster, Md.
Harry McDonald, Clay City, Ill. Thomas Norwod, Northport, Ala. Robert Sloar, Eangor, Me.
Michael Simons. Chicago, Ill.
William Trenbeth, Los Angeles, Calif.
Marc DeLorenzo. Hyannis, Mass.
Terry Henry, Keene, N. H.
Bill Lester, Grimstead, Va.
Max McDonald, Findlay, Ohio
Desmond Lanktree, London, Ont.
D. J. McGovern, Yorktown, Va. Danny Littel, Milwaukee. Wisc. David Jerome, Newton Centre, Mass. E. J. Kauffmann, Louisville, Ky.

Note! At the request of many of our readers, and to conform with radio club publications and international broadcasting schedules, we are going to be bringing you the Shortwave Section of WHITES RADIO LOG with all times indicated in Greenwich Mean Time, 24 hour clock. "GMT" is the international time system and indicates the time at the Greenwich Observatory in England.

To aid you in converting GMT into your local time, we offer you the following chart, which you may find a handy guide around your DX shack.

GMT TIME TABLE

GMT	EST	CST	MST	PST
0000	1900	1800	1700	1600
0100	2000	1900	1800	1700
0200	2100	2000	1900	1800
0300	2200	2100	2000	1900
0400	2300	2200	2100	2000
0500	0000	2300	2200	2100
0600	0100	0000	2300	2200
0700	0200	0100	0000	2300
0800	0300	0200	0100	0000
0900	0400	0300	0200	0100
1000	0500	0400	0300	0200
1100	0600	0500	0400	0300
1200	0700	0600	0500	0400
1300	0800	0700	0600	0500
1400	0900	0800	0700	0600
1500	1000	0900	0800	0700
1600	1100	1000	0900	0800
1700	1200	1100	1000	0900
1800	1300	1200	1100	1000
1900	1400	1300	1200	1100
2000	1500	1400	1300	1200
2100	1600	1500	1400	1300
2200	1700	1600	1500	1400
2300	1800	1700	1600	1500

For conversion of GMT to U.S. Daylight (summer) time add one hour to the desired local time. In other words 0000 GMT is 1900 EST and would be 2000 EDST, 1900 CDST, etc.

The following abbreviations are used: BCBroadcasting Company, Corporation or System; E- Emissora; R-Radio; V- Voice or Voz.

Freq. (Hz) Call	Name	Location	GMT	Freq. (Hz)	Call	Name	Location	GMT
2410	$4 \times O$	R. Lumiere	Les Cayes, Haiti	1000	3315		ORTF	Ft. de France,

MHATTIE 8

kHz	Call	Name	Location	GMT
3820	-	Windward I. B.C.	St. Georges,	
3952	MCM		Grenada	0130
3980		R. Peking	London, England	120
3985	HCER5	Escuelas R. Popular	Riobamba.	
4164	-	Ankharara	Ecuad	0230
		Ulanbatras	Mongolia	2255
4380	-	R. Peking	Peking, China	1045
4600	-	R. Nepal	Kathmandu, Nepal	1400
4707	-	E. Mariana	Pasto, Colombia	0200

60-Meter Band - 4750 to $5060 \mathrm{kH}_{\mathbf{z}}$				
	$\overline{Y V L A}$	R. Kabul V. de Carabobo	Kabul, Afghanistan	0155
$\begin{aligned} & 4785 \\ & 4810 \\ & 4828 \\ & 4830 \\ & 4835 \end{aligned}$			Venezuela	0930
	HCFA4	R. Horizonte	Huanuco, Peru	0030
	-	Rhodesian B.C.	Manabi, Rhodesia	1120 0452
		Overseas B.C.	Bangkok, Thailand	1100
		R. Mali	Bamako, Mali	0630
		R. Clube	Lourenco Marqu	0630
4845	-	BBC Relay	Mozamb.	0400
	GF		Bechuanaland	1545
4847		caramonga	Bucaramonga. Colombia	1050
	HRVK.	R. San isidro	La Ceiba,	
$\begin{aligned} & 4855 \\ & 4865 \end{aligned}$	HJFV	R. Neiva	Honduras Neiva, Colombia	2300 0200
		E. Regional	Azores Is.	0030
	PRC5	R. C. de Belem	Para, Brazil	0920
4870		V. de Guaranda	Colombia	0400
	YVKP	R. Tropical	Caracas, Venez.	0100
4875	ZYZ30	R. du Dahomey R. Jornal do Brazil	Cotonou, Dahomey	45
	$2 Y 230$		${ }_{\text {Rio de }}$ Brazil ${ }^{\text {aneiro, }}$	迷
4890	HCVE4	V. de Esmeraldas R. Senegal	Esmeraldas, Ecu.	00
	YVKB	R. Venezuela	Dakar, Senegal	2330
	VLT4	Austral. B.C.	Port Moresby,	
4895			Papua	0950
4895		ORTF	Fort-de-France,	
$\begin{aligned} & 4905 \\ & 4910 \end{aligned}$	CRGRO		Bie, Anartinique	10
	HCJMI	R. Gran Colombia	Quito, Ecuador	2300
		R. Peking	Peking, China	1145
		R. de Guinea	Conakry, Guinea	0653
4914	ZYR60	R. Cult. Araraquara	Araraquara, Brazil	0200
4916		R. Ghana	Accra, Ghana	0600
	HCAH3	R. el Trebol	Zaruma, Ecuador	0200
4923	VLM4	Austral. B.C.	Brisbane, Austral.	1245
	-	R. Quito	Quito, Ecuador	0000
			Abidian.	2330
4950	HCZXI	R. Nacional	Quito, Ecuador	0330
		R. Senega	Dakar, Senegal	0600
4955	YVMM HJCQ	R. Coro	Coro, Venez.	0115
		R. Nacional	Bogota, Colombia	0115
4965	HJAE	R. Santa Fe	Bogota, Colombia	0500
4975	ZYV9	R. Jimbira	Sao Luiz, Brazil	2140
4980		R. Ghana	Accra, Ghana	0600
	YVMQ	Nigerian B.C.	Lagos, Nigeria	0430
		R. Barquisimeto	Barquisimeto,	
4994		R. Omdurman R. Tropico	Venez.	2245
4995	HRQW		Tegucigalipa,	0425
	$\begin{aligned} & \text { ZYY2 } \\ & \text { OAX2 } \\ & 4 \mathrm{VGS} \end{aligned}$HIBB		Honduras	2300
$\begin{aligned} & 5005 \\ & 5021 \end{aligned}$		R. Brasil Central R. Jaen R. Independence V. del Papagayo	Goiania, Brazil	0100
			Jaen, Peru	0200
			Goinaves, Haiti	0015
5030			La Romana.	
			Domin. Rep.	0332
5040		R. Lome	Lome, Togo 2	2100
	- R	R. Maturin	Maturin, Venez	2315
		Burma B.C.	Rangoon, Burma	1430
5050	- R	R. Tanzania	Dar-es-Salaam,	
			Tanzania 0330	0330
$\begin{aligned} & 5804 \\ & 5920 \end{aligned}$	YVKD	R. Cultura	Caracas, Venez. 220	2200
	- R	Sanaa S	Sanaa, Yemen 04	0415
	- R	R. Vilnus	Vilnus, USSR 225	2230

kHz	Coll	Name	Location	GMT
5930	-	R. Praque	Prague, Czech. Phnom-Penh. Cambodia Bonaire, Neth. Antilles	0105
	-	R. Cambodge		O105
5942	-	Trans World R.		0530
				1430

49-Meter Band- 5950 to $6200 \mathrm{kH}_{\mathrm{z}}$

5955		R. Canada	,
			Guatemala City, Guat.
	-	R. Berlin $\operatorname{nt} \mathrm{t}^{\prime}$,	Berlin, E. Germany

$\begin{array}{ll}\text { Berlin, } & \text { E. Germany } 0345 \\ \text { Berlin, E. Germany } & 0100\end{array}$ Managua,

$$
\text { Nicaragua } 0200
$$

Berlin, E. Germany 0000
Bogota, Colombia 1100
Salisbury,
$\begin{array}{ll}\begin{array}{l}\text { Rhodesia } \\ \text { Cologne, W. W. } \\ \text { Germany }\end{array} & 0600 \\ \end{array}$

Germany	2110
Andorra	1100
Swan Island	0420

$\begin{array}{ll}\text { Swan Island } & 0420 \\ \text { Sydney, N.S. } & 2115 \\ \text { Mexico, D.F. Mex. } 0000\end{array}$
Mexico, D.F.. Mex. 0000
Salisbury, Rhodesia 0616
Guinee 2230
$\begin{array}{ll}\text { Baru, Panama } & 0245 \\ \text { Quito, Ecu. } & 0513\end{array}$
Quito, Ecu.
London, England 0059
$\begin{array}{ll}\text { Monrovia, Loveria } & 0430 \\ \text { Greenville, N.C. } & 0615\end{array}$
Mexico, D.F. Mex. 0000
$\begin{array}{ll}\text { Toronta, Ont. } & 0200 \\ \text { Sofia, Bulgaria } & 2000\end{array}$
$\begin{array}{ll}\begin{array}{ll}\text { Sonda, } \\ \text { Aldestine) } \\ \text { Algeria }\end{array} & 0100\end{array}$
$\begin{array}{ll}\text { Algeria } & 0100 \\ \text { Rorne, Italy } & 0345 \\ \text { Bangkok, Thailand } & 1300\end{array}$
Bangkok, Thailand 1300
Cologne, W.
Germany
$\begin{array}{ll}\text { Kuala Lumpur. } & \\ \text { Malaysia } & 1100 \\ \text { Belarade } & \end{array}$
Belgrade.
Yugoslavia $\quad 1645$
Portoviejo,
$\begin{array}{cl}\text { Ecuador } & 0510 \\ \text { Merida, Mex. } & 0200\end{array}$
Santiago, Chile 0210
Hermosillo, Mex. 012
$\begin{array}{ll}\text { Villavicencio, } & \\ \text { Colombia, } & 0200 \\ \text { Greenville, N.C. } & 0015\end{array}$
$\begin{array}{ll}\text { Greenville, N.C. } & 0015 \\ \text { Brussels, Belgium } & 2315\end{array}$
Cali, Colombia 0500
Cologne, W. Germany
$\begin{array}{ll}\text { Rio de Janeiro, } & 0140 \\ \text { Brazil } & 0000\end{array}$ Berlin, E. Germany 0000 $\begin{array}{ll}\text { Monrovia, Liberia } & 0430 \\ \text { Berne, Switz. } & 0545\end{array}$
Havana, Cuba $\quad 0100$
Kuala Lumpur,

Kuala Lumpur,
Malaysia
Cologne, W. Germany
Belo Horizonte,
Ziguinchar.
Senegal
0915
Guatemala City,
Guat. Brazil 2300
$\begin{array}{ll}\text { Sao Paulo, Brazil } & 0000 \\ \text { Delano, Calif. } & 1000\end{array}$
London, England 0400
$\begin{array}{ll}\text { San Jose, C.R. } & 0000 \\ \text { Budapest, Hungary } 0300\end{array}$
Budapest, Hungary 0300
Pyongyang. N.
Korea

Korea	1045
Tunisia	1800
Peking, China	1155
Peking, China	2150
Karachi, Pakistan	1245
Rangoon, Burma	1430
Paris, France	0515
Prague, Czech.	0105
Kiev, USSR	0030
Mogadiscio,	
Somali	0400

Whistlers
Continued from page 49

ten earth stations are spread out from Labrador to Antarctica. And last year, an OGO-C satellite blasted off from Vandenherg Air Force Base in California, to carry special radio receivers into space to record the low frequency signals of the traveling wave. And just before going to press, the Canadian satellite Alouette reported it had cited a new whistler that reaches 8,000 miles into space.

But Dartmouth men report even deeper penetration. They claim that studies of whistlers has expanded the concept of the ionosphere thousands of miles into space. Before these whistler studies, man believed atmosphere ended and space began some 1500 miles above the earth. Now conservative estimates place division at around 8,000 miles.

Recent Dartmouth studies report-even at a distance of four earth radii or 16,000 miles from the earth's surface-a whistling wave with one thousand electrons to each cubic inch of atmosphere. All of which proves space may not be as "empty" as we thought. And if engineers persist studying the whistling wave, we may be in for more surprises, perhaps even a new means of communication.

Drap Shipment

Fiber Optics

Continued from page 86
glass threads like a ping-pong ball caroming down a pipe. Even if the threads are looped in circles, the light will come out only at the end.

Add the Laser. One of the most exciting prospects in medical research is the union of fiber eptics with lasers-devices that produce light (or energy) so powerful that it can punch holes in steel plates. Powerful as it is, laser light can be sent through a fiber-optics system. Scientists are talking about piping laser light into the body to cauterize an internal wound-an experiment Kapany has already performed with animals.

An even more revolutionary-and admittedly speculative-hope for the future is to put lasers to wo-k against cancer. Experiments, in laboratory animals, have indicated that the laser beam is effective against some cancers. If experiments during the next couple of years are successful, it may be possible, without surgery, to focus laser light on the exact trcuble spot inside the body and to burn out cancers or other growths.

A project that sounds even more revolutionary (but is closer to realization) is the literal combination of lasers and fiber optics -making the oftical fibers themselves into
lasers by treating them with the proper chemicals.

Short, powerful bursts of laser light are used routinely now to weld torn retinas into place in human eyes. But this method can be used only on the part of the retina that can be seen by the surgeon. Dr. Charles J. Campbell of Columbia-Presbyterian Medical Center in New York is working with an optical fiber laser to see if hidden retinal tears can be healed by focusing a laser beam against the exterior of the eye. Experiments with rabbits have been promising, and Dr. Campbell has reported that treatment of humans may be possible with a more powerful laser. Treatment is also underway to carry this cool but intense light into the inner ear.

While fiber optics offers wide horizons for experimenters, its immediate value is the better information it gives doctors about their patient's insides, information they cannot get from X-rays in many cases. Throughout medical history one of the doctor's greatest handicaps has been the wall of human tissue between him and the patient's ailment. X-rays provided the first break in that wall. With fiber optics, doctors may someday be able to look directly at almost any suspected trouble spot in the human body, and to make faster and more accurate diagnoses. And in some cases, an adaptation of the same type of instrument used for looking can be used for treating.

Voltage by the Numbers

Continued from page 65
phases-to equalize the load on the lines.
The venerable $110 / 220$-volt service is outmoded and is disappearing rapidly. The $d e$ sign center for practically all modern household equipment is 115 to 117 volts; incandescent lamps, however, are marked 120 volts; those rated long-life may be marked 130 and 220 and 240 -volt lamps are available. The power companies have been beefing up their generators and lines, and singlephase service is now widely $115 / 230$ to $117 / 234$ volts.

208 or 230 . In new real-estate developments the power companies find it more expedient to run the whole three-phase system around the streets and to install transformers, as needed, on a block-by-block or even a house-by-house basis. To accommodate the
multitude of ordinary appliances designed for the 115 to 117 -volt range, they have settled on 120 volts; this allows for a little drop off during periods of heavy current demand. In a three-phase system the voltage across phase legs is 73% higher than the voltage from neutral to any one leg; 73% of 120 is 87.60 , for a total of 207.6 volts, or 208 for practical purposes.

The 208 -volt output obtained across any two of the phase legs of a three-phase circuit is single-phase in characteristics, like the $120-$ volt connection. The advantages of full threephase service, for motor operation, are obtained when the machine is connected to all three phase legs, without the neutral.

There is enough difference between 208 and 230 volts to make the operation of $230-$ volt appliances on 208 volts unsatisfactory. Don't let a dealer tell you "it's all the same." Most manufacturers now offer 208-volt models of their products as a matter of course.

N

* Starred items indicate advertisers in this issue. Consult their ads for additional information and specifications.

ELECTRONIC PARTS

1. Allied's catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
$\star 2$. The new 510 -page 1966 edition of Lafayette Radio's multi-colored catalog is a perfect buyer's guide for hi-fi'ers, experimenters, kit builders, CB'ers and hams. Get your free copy, today!
*3. Bargains galore! Parts, tools, test equipment, radios and many more shoppers' specials at ultra-low prices. Progressive Edu-Kits will send latest catalog.
*4. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
$\star 5$. Unusual scientific, optical and mathematical values. That's what Edmund Scientific has. War surplus equipment as well as many other hard-to-get items are included in this new 148 -page catalog.

* 106 . With 70 million TV's and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a second! Get Universal Tube Co,'s Troubleshooting Chart and facts on their $\$ 1$ flat rate per tube.
*7. Whether you buy surplus or new, you will be interested in Fair Radio Sales Co.'s latest catalogchuck full of surplus buys for every experimenter.
*8. Want a colorful catalog of goodies? John Meshna, Jr. has one that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts, etc. All at unbelievable prices.
+23. No electronics bargain hunter should be caught without the latest copy of Radio Shack's catalog. Some equipment and kit offers are so low, they look like misprints. Buying is believing.
*6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in merchandise available, including a giant $\$ 1$ special sale.

10. Burstein-Applebee offers a new giant catalog containing 100 's of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
11. Now available from EDI (Electronic Distributors, Inc.) a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing list.
12. VHF listeners will want the latest catalog from Kuhn Electronics. All types and forms of complete receivers and converters.
13. Unusual surplus and new equipment/parts are priced "way down" in a 32-page flyer from Edlie Electronics. Get one.

HI-FI/AUDIO

*26. Always a leader, H. H. Scott introduces a new concept in stereo console catalogs. "At Home With Stereo" the 1966 guide, offers decorating ideas, a complete explanation of the more technical aspects of stereo consoles, and, of course, the complete new line of Scott consoles.
15. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turntable.
16. Garrard has prepared a 32-page booklet on its full line of automatic turntables including the Lab 80, the first automatic transcription turntable. Accessories are detailed too.
17. Build your own bass reflex enclosures from fool-proof plans offered by Electro-Voice. At the same time get the specs on $E V^{\prime}$'s solid-state hi-fi line-a new pace setter for the audio industry.
19. Empire Scientific's new 8-page, full color catalog is now available to our readers. Don't miss the sparkling decorating-with-sound ideas. Just circle \#19.
22. A wide variety of loudspeakers and enclosures from Utah Electronics lists sizes, shapes, and prices. All types are covered in this heavily illustrated brochure.
24. Need a hi-fi or PA mike? University Sound has an interesting microphone booklet audio fans should read before making a purchase.
27. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
95. Confused about stereo? Want to beat the high cost of hi-fi without compromising on the results? Then you need the new 24 -page catalog by Jensen Manufacturing.
99. Interested in learning about amplifier specifications as well as what's available in kit and wired form from Acoustech? Then get your copy of Acoustech's 8-page colorful brochure.

tAPE RECORDERS AND TAPE

31. All the facts about Concord Electronics Corp. tape recorders are yours for the asking in a free book-
let. Portable, battery operated to fourtrack, fully transistorized stereos cover every recording need.
32. "Everybody's Tape Recording Handbook" is the title of a booklet that Sarkes-Tarzian will send you. It's 24-pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
33. Become the first to learn about Norelca's complete Carry-Corder 150 portable tape recorder outfit. Fourcolor booklet describes this new car-tridge-tape unit.
34. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carry both reel and cartridge re corders you should know about.
35. Sound begins and ends with a Uher tape recorder. Write for this new 20 page catalog showing the entire line of Uher recorders and accessories. How to synchronize your slide projector, execute sound on sound, and many other exclusive features.

HI-FI ACCESSORIES

76. A new voice-activated tape recorder switch is now available from Kinematix. Send for information on this and other exciting products.
77. A 12-page catalog describing the audio accessories that make hi-fi living a bit easier is yours from S witch craft, Inc. The cables, mike mixers, and junctions are essentials!
78. Swinging to hi-fi stereo headsets? Then get your copy of Superex Electronics' 16 -page catalog featuring a large selection of quality headsets.
79. You can't hear FM stereo unless your $F M$ antenna can pull 'em in. Learn more and discover what's available from Finco's 6-pager "Third Dimensional Sound."

KITS

*42. Here's a colorful 108-page catalog containing a wide assortment of electronic kits. You'll find something for any interest, any budget. And Heath Co. will happily send you a copy.
*44. A new short-form catalog (pocket size) is yours for the asking from EICO. Includes hi-fi, test gear, CB rigs and amateur equipmentmany kits are solid-state projects.

aMATEUR RADIO

46. A long-time builder of ham equipment, Hallicrafters will send you lots of info on the ham, CB and commercial radio-equipment.

CB-BUSINE55 FADIO SHORT-WAVE RADIO

\star 93. Heath Co. has a new 23-channel all-transistor 5 -watt $E B$ rig at the lowest cost on the market, plus a full line of CB gear. See their new 10 band AM/FM/Shortwave portable and line of shortwave radios.
48. Hy-Gain's new CB antenna cata\log is packed full of useful information and product data that every CB'er should know about. Get a copy.
107. Get with the mc.bile set with Tram's XL'100. The new Titan CB base station, another Iram great, worth knowing about. Get complete specifications plus facts on other accessories.
49. Want to see the Latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Amphenol Cadre Indrstries has a booklet that answers lots of the questions you may have.
100. You can get increased CB range and clarity using the "Cobra" transceiver with speech cempressor-receiver sensitivity is excellent. Catalog sheet will be mailed by $B \& K$ Division of Dynascan Corporation
54. A catalog for CB"ers, hams and experimenters, with oustanding values. Terrific buys on Grove Electronfcs' antennas, mikes ard accessories.
90. If two-way radio is your meat, send for Pearce-Simpson's new booklet! Its 18 pages cover equipment selection, license application, principles of two-way communications, reception, and irstallation.
96. If a rugged low-cost business/ industrial two-way radio is what you've been looking for, be sure to send for the brochure on E. F. Johnson Co.'s brand new Messenger "202."
101. If it's a CB product, chances are International Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB oriented company can be relied on to fill the bill.
102. Sentry Mig. Co. has some inter esting poop sheets on speech clippers converters, talk power kits and the like for interested CB'ers, hams and SWL'ers, too.
103. Squires-Sanders would like you to know about their CB transceivers, the " 23 'er" and the new "S5S." Also, CB accessories that add versatility to their 5 -watters

SCHOOLS AND EDUCATIONAL

661. ICS (International Correspondence Schools) offers 236 courses including many in the fields of radio, TV, and electronics. Send for free booklet "It's Your Future."
$\star 74$. How to get an F.C.C. license, plus a description of the complete electronic courses offered by Cleveland Institute of Electronics are in their free catalog.
662. Get the low-down on the latest in educational electronic kits from Trans-Tek. Build light dimmers. amplifiers, metronomes, and many more. Trans-Tek helps you to learn while building.
663. Bailey Institute of Technology offers courses in electronics, basic electricity and drafting as well as refrigeration. More information in their informative pamphlet.
664. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic school, ask for this brochure from the Indiana Home Study Institute.
665. Intercontinental Electronics School offers three great courses: stereo radio \& electronics; basic electricity; transistors. They are all described in Inesco's 1966, 16-page booklet.

TOOL5

*78. A dozen tools for dozens of jobs in Xcelite's 99PS-50 hip pocket set. Contains plastic handle and interchangeable blades: 7 nutdrivers, 2 regular and 2 Phillips screwdrivers plus 4 -inch extension. Xcelite's Form S1065 explains all.

ELECTRONIC PRODUCTS

66. Try instant lettering to mark control panels and component parts. Datak's booklets and sample show this easy dry transfer method.
+108. Get the facts on Mercury's line of test equipment kits-designed to make troubleshooting easier, faster and more profitable.
67. "Get the most measurement value per dollar," says Electronics Measurements Corp. Send for their catalog and find out how!
68. How about installing a transistorized electronic ignition system in your current car? AEC Laboratories will mail their brochure giving you specifications, schematics.
69. Seco offers a line of specialized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.

TELEVISION

$\star 70$. Heath Co. now has a $21^{\prime \prime}$ round and $25^{\prime \prime}$ rectangular-tube color TV kit in addition to their highly successful $23^{\prime \prime}$ B\&W model. All sets can be installed in a wall or cabinet: all are money-saving musts!
73. Attention, TV servicemen! Barry Electronics "Green Sheet" lists many TV tube, parts, and equipment buys worth while examining. Good values, sensible prices.
72. Get your 1966 catalog of Cisin's TV, radio, and hi-fi service books. Bonus-TV tube substitution guido and trouble-chaser chart is yours for the asking.
29. Install your own TV or FM antenna! Jefferson-King's exclusive free booklet reveals secrets of installation. orientation; how to get TV-FM transmission data.
97. Interesting, helpful brochures describing the TV antenna discovery of the decade-the \log periodic antenna for UHF and UHF-TV, and FM stereo. From JFD Electronics Corporation.

RADIO-TV EXPERIMENTER, Dept. LL-98 505 Park Avenwe, New York, N. Y. 10022
Please arrange to have the literature whose numbers 1 have encircled se th to me as soon as possible. I am onclosing 254 (no stamps) to cover handling charges.

NAME (Print clearly)

ADDRESS

STATE ZIP CODE

Knight-Kit Color Generator
 Continued from page 63

ber-grip alligator clip so it can be clamped inside the receiver cabinet. A panel switch turns the lamp on and off.

To eliminate the need to carry an extra piece of gear, the KG-685 has a metal mirror mounted to the underside of the cabinet.

When stored under the cabinet the mirror surface is protected by the cabinet.

Construction. The color/pattern generator is wired on a chassis somewhat smaller than the cabinet, thereby providing more than adequate storage space for the test cables and instruction manual.

The storage compartment and the generator's rear apron which contains the adjust-
ment controls are inside the case, and a storage compartment door cnmpletely encloses the cables and adjustments to prevent unauthorized tampering.

Though the KG-685 is a rather complex kit- 22 transistors and 8 diodes-most of the circuitry including the frequency determining elements are mounted on two printed circuits, thereby reducing assembly complexity and the possibility of wiring errors.

Considering the number and nature of the output test signals and the conveniences for simplifying the service technician's adjustment procedures, the KG-685 priced at $\$ 89.50$ in kit form, ranks as a first choice in color bar generators.

For additional information on the KG685 Color Bar/Pattern Generator Kit write to Dept. 20RT, Allied Radio Corp., 100 N. Western Ave., Chicago, Illinois 60680.

Rear view of generator. Test cables store inside cabinet. Hand is holding the service lamp which can clip inside TV receiver for illumination. Small size and light weight of unit are due to complete transistorization of circuit.

VTVM Dry Cell Eliminator
 Continued from page 30

If your VTVM requires 3 volts or more, you can replace the regulating diodes (D2, D3, and D4 in Fig. 1) with an appropriate Zener diode (also called a reverse-biased reference diode).

One more possibility exists-if the ohmmeter dry cell is returned to the same point as the filament transformer. In this case, the filament supply might be used to eliminate the added winding. Remember, however, that the added circuitry draws considerable current. Do not overload the filament winding on the transformer.

Whatever arrangement you use, you will find this dry-cell eliminator worth the small amount of effort required to build and install it in your VTVM.

"By golly, you're right! It does say, 'For Grounding, Connect Equipment to Nearby Pipe.'"

ADDITIONAL INCOME

MAKE Your Classifled Ad Pay. Get - How To Write a Classified Ad That Pulls." Includes certificate worth $\$ 2.00$ towards classified ad in S \& M. Send $\$ 1.00$ to C. D. Wilson, Science \& Mechanics, 505 Park Ave., New York, N. Y. 10022.

BOATS, MOTORS \& MARINE SUPPLIES

FULL size, cut-to-shape boat patterns, blueprints. Send $60 \$$ for big New, illustrated "Build a Boat" catalog includes Fishing Boats, Garvies, Cruisers, Catamarans. Houseboats-Outboards. Inboards, Sailboats- $7 \frac{1 / 2}{2}$ to 38^{\prime}. 'How to Bulld a Boat' booklet $\$ 2.50$. Cleveland Boat Blueprint Co., Box 18250. Cleveland, Ohio.
BOAT Kits. Factory molded fiberglas or pre-assembled plywood. 50 models, 12^{\prime} to 40^{\prime}, Runabouts, Cruisers, Houseboats. Free catalog, Luger, Dept. UC-66, 9200 Bloomington Freeway, Bloomington, Minnesota.

VICRAFT Kayaks, five models, prefabricated kits from $\$ 29.00$. Dept. G.P.O., Box 145, Portage, Mich. 49081.

BUILD your own boat motor from Chevrolet or Ford engine, most others. Chevrolet or Ford engine, mast oghers. Complete kits-maniforine, Dept. BJ, Berkeley, Calif. Star
94710.

BOOKS \& PERIODICALS

HUMOROUS Book Club, Sample $\$ 1.00$. Walter Groeger, 2914 Falcon Drive, Indianapolts, Indiana 46222.

BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ a Year by Mailorder. Helped others to make money! Start with $\$ 10.00$-Free Proof. Torrey, Box 63566T, Oklahoma City, Okla. 73106

FREE Book "990 Successful LittleKnown Businesses," Fascinating! Work home! Plymouth-911-G. Brooklyn, N. Y. 11218.

RAISE capltal fast-easy proven sources - Free information. Advisor, Box 48337-SM-2, Los Angeles 90043 .

MAKE Money selling your own publications. Eliminate competition. Free Details. Michael Seitelma
Park, New York 11374.

EARTHWORMS

BIG Money Raising Fishworms and Crickets. Frce Literature. Carter Farm-O. Plains, Georgia 31780.

FARMS, ACREAGE \& REAL ESTATE
CALIFORNIA. $21 / 2$ Acres. Fabulous Los Angeles County. $\$ 45.00$ down. $\$ 19.00$ Angeles County, Box 35291 , Los Angeles, California 90035 .

FIREARMS, AMMUNITION \& EQUIPMENT

[^4]
FOR INVENTORS

PATENT Searches-48 hour airmall service, $\$ 6.00$, including nearest patent copies. More than 200 registered patent attorneys have used my service. Free attorneys have used Forms. Write Miss Ann Hastings, Patent Searcher, P. O. Box 176, Washington 4, D. C.

FOR SALE-MISCELLANEOUS

BARGAINS Our Business. Catalog 10 Refundable. Tojocar. 2907-B West 39 th Place, Chicago, Ill. 60632 .

CATALOG of all Science \& Mechanics Craftprints. Send 254 to cover postage and handling to Craftprint Div., Sclence \& Mechanics, 505 Park Ave., New York, New York 10022 .

FORMULAS \& TRADE SECRETS

FORTUNES in 10,000 formulas $\$ 3.85$. A must for success in Mid-66. Buksh, ${ }_{2109}$ must A, for Success in Midar Avenue, Long Beach, | 2109 | |
| :--- | :--- |
| California | A |

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free literature. Smith-McKinley, Box 3038, San Bernardino, Callf.

INVENTIONS WANTED

WE either sell your Invention or pay cash bonus. Write for details. Universal Inventions, 298-5, Marion, Ohio.

MISCELLANEOUS

INSURANCE Accident Investigators Urgently Needed. Top Pay-Car-Age-Educa-

tion No Barrler, Write Adjusters, Dept. tion No Barrler, Write Adjusters, Dept. | SM, |
| :--- |
| 33125. |

STAINLESS Steel Floating Fish Knife $\$ 1.45$ sample, $\$ 8.85$ a dozen. Information 25% Buksh, 2109° ' A' Cedar Avenue, Long Beach, Calff. 90806.

MONEYMAKING OPPORTUNITIES

ADDRESSERS And Mallers Needed. Send stamp for information. Lindbloom Company, 1508, Erle, Chicago 60622.

START Profitable Business in spare time. Investigate many moneymaking agency and franchise opportunities. Send agency and franchise opportunities. Send
10¢ for sample copy of ties Magazine, 505 Park Ave., New York ties Magazine,
10022 , Dept. S.

MUSIC \& MUSICAL INSTRUMENTS

GUITAR Amplifier. Bulld 40 watt Amplifier. All parts and picture instructions $\$ 35.00$. Write: Fun With Strings, 731 E. School St., St. Charles, Loulsiana.

PATENT SERVICE

PATENT Searches, $\$ 6.00$; For free ' 'InPation Record" and "Important Inforvention Record and ${ }^{\text {mation }}$ Inventors Need," Write: Miss mation Inventors Need, Write: Miss District of Columbia.

PATENT Searches-48 hour airmail service, $\$ 6.00$, Including nearest patent copies. More than 200 registered patent attorneys have used my service. Free Invention Protection Forms write: Miss Ann Hastings, Patent Searcher, P. O. Box 176, Washington 4, D, C.

PERSONAL

GET out of debt-clear credit, immediate relief-Advisor, Box 48337-EM-1, LoS Angeles 90048 .

CONVENIENT Business or Personal Checking Accounts, without service charges or minimum balance. List of Banks: $\$ 1.00$. or minimum balance. List of Banks, Brooklyn, New York 11203 .

LOOK Men-especlally Golf Players. Cat your shoe cost. Send 254 for details. Delph's Leather Products, Tamaqua, Pennsylvania 18252.

PETS-DOGS, BIRDS, RABBITS,

HAMSTERS, ETC.
MAKE big money raising rabbits for us Information 25ϕ. Keeney Brothers, New Freedom, Penna,

RADIO \& TELEVISION

McGEE Radio Company. Big 1966 Catalog Sent Free. America's Best Values. $\mathrm{Hi}-\mathrm{Fi}$, Amplifiers, Speakers, Electronic Parts. Send Name, Address and Zip Code Number to McGee Radio Company. 1901 McGee Street, Dept. RTV, Kansas City, Missouri 64108 .

FREE Catalog. Electronics parts, tubes Wholesale. Thousands of items. Unbeat able prices. Arcturus Electronics-RT 502 22nd St., Union City, N. J. 07087

CONVERT any television to sensitive, big-screen oscilloscope. Only minor chargessary. Illustrated plans, $\$ 2.00$. Relco-A.30 Box 10563 , Houston, Texas 77018.
ALLWAVE Radio Kit, Tube, Transistor Included $\$ 5.00$. Headphones $\$ 2.00$. Ekera dio. Box 131, Temple City, Calif.
BIG Money In CB Radio Business. Earn up to $\$ 1.000$ per month or more. Sell the hottest line of all-transistor Citizen Band Radios. Amazing pronts with minimum Investment, No overhead, no service problems, Write for detalls, Thomas, 9 Harbor City, Calif. 90710 .
CB'ERS—Radio Shops: Earn ex*ra money. Handle my line of Quality Goodies (List-stamp please). Rambling Redskin 5908 Kennedy Blvd. West New York, New Jersey 07093 .
NEW! HI-FI Enthusiasts-A Special Magazine for you. Read the unblased tests on new equipment. Send $\$ 1.50$ includes, postage $\&$ Handing to Hi-FI New York 10022 .

SONGWRITERS

POEMS Wanted for musical setting and recording. Send poems. Free examination. Crown Music, 49-SC West 32, New York 1.

START YOUR OWN BUSINESS

START your own export business, no capital required. Free course of instruction. Detalls 254. The Export Merchants Assoc., 155-7F Country Lane, East Hartford, Connecticut 06118.

TREASURE FINDERS-PROSPECTING
 \section*{EQUIPMENT}

[^5]
Out-of-Band-Its

Continued from page 74
by hams in this hemisphere. 7320 and 7330 kHz are additional Radio Moscow frequencies that are used to the Americas, although these are allocated to the fixed services.

All the Russian 7 mHz channels to the Americas can be heard with little difficulty during the evening hours, between 0000 and 0500 GMT; 7 PM-Midnight, EST.

Ali Baba's Boys. Another major out-of-band-its is the United Arab Republic. One of the largest broadcasters in both total output as well as number of languages, the UAR also seems to have a preference for the amateur bands, with transmissions on 7050 and 7075 kHz . Transmitters carrying these frequencies are powerful, 100,000 -watts
each, and can be heard here in the United States during the early evening hours.

Several other Cairo frequencies worth mentioning are 9477,9495 , and 15100 kHz , which is on the edge of the 15 mHz broadcast band, but which nevertheless overlaps into the aeronautical communications band which is adjacent.

They Are Not Alone. Since the list of out-of-band-its is very long, it is impossible to show them all. The above has been just several of the more interesting and newsworthy of the group.

Table II lists several additional broadcasters who operate out-of-band and which are of more than passing interest. Time and frequency are given for periods when reception in the U.S. is most likely.

Since there are many other out-of-band stations, the DX'er bent on devoting his time to these illegal broadcast operations can count on many hours of stimulating and rewarding DX.

Acoustech XI
 Continued from page 45

with metal covers are: basic solid-state XI power amplifier kit $\$ 129.50$, P / M amplifier/ control center kit $\$ 89.50$. For additional information on Acoustech Add-A-Kit units and other fine audio products write to Acoustech, Inc., Dept. RTV, 139 Main St., Cambridge, Mass. 02142.

Specifications for Integrated Amplifier

Sensitivity for 15 watts output into 8 ohms:
Magni. $=$ low- 3 millivoltt ms .
Magnetic high 14 millivolts rms.
Tuner- 0.15 volts rms.
Auxiliary -0.15 volts rms.
Tape- 0.15 volts rms.
Tone controls

Tone controls

	Boost	Cut
$20 \mathrm{~Hz}:$	9 db	10 db
20 kHz	12 db	9 db

Audio Investigator

Continued from page 54
length, of the resistors mounted on S1, can cause shorts-clip them close or use spaghetti tubing.

If you have any trouble, it can be easily located by comparing the voltage readings at the tube-socket contacts with those in the table. Just because your reading doesn't exactly coincide with those given don't start ripping everything apart. Check all socket voltage readings. Remember that the resistors have a tolerance of $\pm 10 \%$ and most VTVMs have a $\pm 5 \%$ tolerance. So if a reading is 15 to 20% away from that given in the table don't panic-just continue to double check the voltages and circuitry.

For a quick check, to see if the unit is operating near normally, you can hear the audio tone from the oscillator with a highimpedance earphone (or head phones) connected to the center contact and J2's shell.

Connecting the center contact of J 1 to pin 5 of the 6 U 8 A or pin 3 of the 6 BH 6 the voltmeter should indicate about 6 volts.

Now that you've finished the Audio "Investigator" you're all set to handle most audio problems. You can signal trace, measure gain-per-stage and do signal-injection troubleshooting.

So now it's all up to you-investigate!

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BUILD YOUR OWN

PHONE/CODE TRANSMITTER

This is just one of seven training kits programmed into NRI's Complete Communications course. You get actual practice in building your own crystal-controlled, phone/code transmitter and putting it on the air. You experiment with modulation, "clamping" circuits, key filters, other aspects of commercial |transmitter operation. Can be put on the air simply by attaching an antenna and complies with FCC regulations. As with all NRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Industry, business offices, the government and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 carefully designed training kits, topping off your practical experi ence phase of training by experi menting with feedback control systems, analog computers and digital computer elements. You actually solve problems on this analog computer you build yourself. This is the practical, fast way to a good paying, career position.

BUILD A CUSTOM-ENGINEERED TELEVISION RECEIVER
want to earn $\$ 3$ to $\$ 5$ an hour in spare time? Want your own parttime or full-time business? In Ra-dio-TV Servicing you learn to install, maintain, service radios, TV sets, hi-fi and stereo, other home Electronics equipment. In your training are eight training kits, including this complete, modern, slim-line TV receiver. You build it yourself, become familiar with components and circuits, learn servicing procedures . . and earn extra money as you train. National Radio Institute, Washing:on, D.C.

Join the Thousands who Gained Surcess with NRI

"I am Frequency Co . ordinator for the 11 th Naval District. The caurse was priceless." 1. J. JENKINS. San Diego. Calif.
"Many thanks to NRI. I Bold FCC License, am master control engineer with KXIB-TV.' R. L WOOD. Fargo, N.D

I am a Senior Engi. seering Aide. Without HRI I would still be working in a factory at - lower standard of living." D. F. CONRAD. Reseda, Calif.

Available Under NEWGIBILL

If you served since January 31, 1955. of are in service, check GI line in postagefree card.

FIRSI CLASS
PERMIT
NO. 20-R
Washingron, D.C.

POSTAGE WILL BE PAID BY

NATIONAL RADIO INSTITUTE 3939 Wisconsin Avenue
Washington, D.C. 20016

GET FAST START WITH NEW
ACHIEVEMENT KIT
Delivered to your dooreverything you need to make a significant start in the Electronics field of your choice. An outstand. ing, logical way to intro duce you to home-study training. It includes your first set of lesson texts and all the "classroom tools" you need. No other school has anything like the new NRI Achievement Kit.

ELECTRONICS

 COMES ALIVE WITH NRI TRAINING KITSNothing is as effective as learning by doing and NRI pioneered the "home lab"r technique of training. NRI invites comparison with training equip. ment offered by any other school. Begin NOW this exciting program of prac. tical learning. Make the skills of the finest Elec. tronic Technicians your own. Mail card below.

"BITE SIZE" TEXTS

 PROGRAM YOUR TRAININGCertainly, lesson texts are necessary. NRI's programmed texts are as simple, direct and well il. lustrated as 50 years of teaching experience can make them. They are carefully programmed with NRI training kits to make the things you read about come alive. You experience all the excitement of original discovery.

HOBE T? CAREER? MAIL CARD NOW
 TO NRI

Whatever vour need ...

 whatever your education there's an NRI train. ing piar to fit your requiremenes. Choose from three maior courses or select one of seven spe. cial courses in particular Electronics subjects. Check the postagefree card be cw, fill in and mail. Nettonal Radio In. stitute. Washington, D.C.
DISCOVER THE EASE AND EXCITEMENT OF LEARNING ELECTRONICS THE NRI WAY

SEE OTHER SIDE

National Radio Institute, Electronics Div. Washington, D.C. 20016

Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call.)
\square TV-Radio Servicing
\square Industrial Electronics
[Complete Communications
\square FCC License
\square Math for Electronics
\square Basic Electronics
\square Electronics for Automation
\square Aviation Communications
\square Marine Communications
\square Mobile Communications

Check for facts on new GI Bill.
Name_Age_ Ag__
Address
City \qquad State \qquad
Accredited Member National Home Study Council

PICK THE TRAINING PLAN OF YOUR CHOICE AND MAIL CARD FOR FREE CATALOG

[^0]: Write for complete catalog of kits and wired instruments - and name of nearest distributor.

 ELECTRONICS CORP
 315 Roslyn Road, Mineola, N. Y. 11501
 Export: Morhan Exporting, 458 Broadway, N.Y.C. 10013 Canada: William Cohen Corp.

[^1]: To use the table put your finger on the region you want to hear and log, move your finger to the right until it is under the local standard time you will be listening and lift your finger. Underneath your point. ing digit will be the short-wave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differances in propagation characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as poor second choices. Refer to White's Radio Log for World-Wide Short-Wave Broadcast Stations list.

[^2]: Completed perforated board showing components in place; note spaghetti on the leads.

[^3]: Fiber-optic tube begins life as thick glass rods (top left) which are drawn out of furnace as thin strands wound on drum. They're cemented, then stacked as tapes. Middle row shows how individual strands occur in mosaic layout. By traveling through individual fiber, light ray won't get jumbled, but continuously reflects around curves. Along bottom row is the complete system and how it would reproduce an image, represented by the letter " E " of the left.

[^4]: SILENCERS: RIfles, Pistols, Details Construction Operation $\$ 1.00$. Gunsco, Soquel, Calif. 95073 . THE New ''Hunting Guide' draws a "Testing The Buck Sluggers," "Getting In Shape For The Hunt," etc. Send for In Shape For The Hunt, etc. $\#$ Send 105 your copy; Hunting Guide ${ }^{\text {york }}$ Ave., New York, N. Y. $10022 . \$ 1.25$.

[^5]: "NEW" Scientific Instrument detects buried gold, silver, coins, treasures. $\$ 19.95$ up. Free catalog. Relco-A30, Box 10563, Houston, Texas 77018 .

